NAG Fortran Library Manual
Mark 18

Volume 12

H - X05

H - Operations Research

MO01 - Sorting

P01 - Error Trapping

S - Approximations of Special Functions
X01 - Mathematical Constants

X02 - Machine Constants

X03 - Innerproducts

X04 - Input/Output Utilities

X05 - Date and Time Utilities

NAG Fortran Library Manual, Mark 18
(©The Numerical Algorithms Group Limited, 1997

All rights reserved. No part of this manual may be reproduced, transcribed, stored in a retiieval
system, translated into any language or computer language or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of the copyright owner.

The copyright owner gives no warranties and makes no representations about the contents of this
manual and specifically disclaims any implied warranties or merchantability or fitness for any
purpose.

The copyright owner reserves the right to revise this manual and to make changes from time to
time in its contents without notifying any person of such revisions or changes.

Printed and produced by NAG
1st Edition — September 1997 ISBN 1-85206-147-2

NAG is a registered trademark of:
The Numerical Algorithms Group Limited
The Numerical Algorithms Group Inc
The Numerical Algorithms Group (Deutschland) GmbH

NAG Ltd

Wilkinson House

Jordan Hill Road

OXFORD

United Kingdom OX2 8DR

Tel: +44 (0)1865 511245
Fax: +44 (0)1865 310139

NAG GmbH NAG Inc

SchleiBheimerstrafie 5 1400 Opus Place, Suite 200
D-85748 Garching Downers Grove, IL 60515-5702
Deutschland USA

Tel: +49 (0)89 3207395 Tel: +1 630 971 2337

Fax: +49 (0)89 3207396 Fax: +1 630 971 2706

NAG also has a number of distributors throughout the world. Please contact NAG for further
details.

[NP3086/18]

Chapter H — Operations Research

Note. Please refer to the Users' Note for your implementation to check that a routine is available.

Routine
Name

HO2BBF
HO2BFF

HO2BUF

HO2BVF
HO2BZF

HO3ABF
HO3ADF

Mark of
Introduction

14
16

16

16
15

Purpose

Integer programming problem, branch and bound method

Interpret MPSX data file defining IP or LP problem, optimize and print
solution

Converts MPSX data file defining IP or LP problem to format required
by H02BBF or E0O4MFF

Prints IP or LP solutions with user specified names for rows and columns
Integer programming solution, supplies further information on solution
obtained by HO2BBF

Transportation problem, modified ‘stepping stone’ method

Shortest path problem, Dijkstra’s algorithm

H - Operations Research

Chapter H

Operations Research

Contents

1

Scope of the Chapter

Background to the Problems

Recommendations on Choice and Use of Available Routines
Routines Withdrawn or Scheduled for Withdrawal

References

[NP3086/18]

Introduction - H

H.1

Introduction - H H - Operations Research

1 Scope of the Chapter

This chapter provides routines to solve certain integer programming, transportation and shortest path
problems.

2 Background to the Problems

General linear programming (LP) problems (see Dantzig [2]) are of the form:

n
find z = (2,,2,.-.,%,)" to maximize F(z) = Z ¢;z;
j=1
subject to linear constraints which may have the forms:

n
Zaijzj =b,, i=1,2,...,my (equality)

=
Eaij‘”j <b;, i=m;+1,...,my (inequality)
=
Zaij"’j > b;, i=my+1,...,m (inequality)
;;12 l, ji=12,...,n (simple bound)
z; < uj, i=12,...,n (simple bound)

This chapter deals with integer programming (IP) problems in which some or all the elements of the
solution vector z are further constrained to be integers. For general LP problems where z takes only real
(i.e., non-integer) values, refer to Chapter E04.

IP problems may or may not have a solution, which may or may not be unique.

Consider for example the following problem:

minimize 3z, + 2z,
subject to 4z, + 2z, > 5

2z, <5
z,— z,<2
and z, 20,2z, 20

The shaded region in Figure 1 is the feasible region, the region where all the constraints are satisfied, and
the points within it which have integer co-ordinates are circled. The lines of shading are in fact contours
of decreasing values of the objective function 3z, + 2z,, and it is clear from Figure 1 that the optimum
IP solution is at the point (1,1). For this problem the solution is unique.

However, there are other possible situations:

(a) there may be more than one solution; e.g. if the objective function in the above problem were
changed to z, + z,, both (1,1) and (2,0) would be IP solutions.

(b) the feasible region may contain no points with integer co-ordinates, e.g. if an additional constraint
3z, <2
were added to the above problem.
(c) there may be no feasible region, e.g. if an additional constraint
g, +z,<1
were added to the above problem.

(d) the objective function may have no finite minimum within the feasible region; this means that the
feasible region is unbounded in the direction of decreasing values of the objective function, e.g. if
the constraints

4z, 422,25, 2,20, z,20,

were deleted from the above problem.

H.2 [NP3086/18]

H - Operations Research Introduction - H

X,
3..

24

Figure 1

Algorithms for IP problems are usually based on algorithms for general LP problems, together with some
procedure for constructing additional constraints which exclude non-integer solutions (see Beale [1]).

The Branch and Bound (B&B) method is a well-known and widely used technique for solving IP problems
(see Beale [1] or Mitra [3]). It involves subdividing the optimum solution to the original LP problem
into two mutually exclusive sub-problems by branching an integer variable that currently has a fractional
optimal value. Each sub-problem can now be solved as an LP problem, using the objective function of
the original problem. The process of branching continues until a solution for one of the sub-problems is
feasible with respect to the integer problem. In order to prove the optimality of this solution, the rest of
the sub-problems in the B&B tree must also be solved. Naturally, if a better integer feasible solution is
found for any sub-problem, it should replace the one at hand.

A common method for specifying IP and LP problems in general is the use of the MPSX file format (see
[4]). A full description of this file format is provided in the routine documents for HO2BUF and E04MZF.

The efficiency in computations is enhanced by discarding inferior sub-problems. These are problems in
the B&B search tree whose LP solutions are lower than (in the case of maximization) the best integer
solution at hand.

A special type of linear programming problem is the transportation problem in which there are p x ¢
variables y;; which represent quantities of goods to be transported from each of p sources to each of ¢
destinations.

The problem is to minimize

P g
ZZ Cri¥Yri

k=11=1

where ¢, is the unit cost of transporting from source k to destination l. The constraints are:

q9
Y Yy =4, (availabilities)

=1

P
Z Y = B; (requirements)
k=1

Y2 0.

[NP3086/18] H.3

Introduction - H H - Operations Research

Note that the availabilities must equal the requirements:

P q P 9
A = ZBI = Zzyu
k=1 =1 k=11=1

and if all the A, and B, are integers, then so are the optimal yj;.

The shortest path problem is that of finding a path of minimum length between two distinct vertices n;
and n, through a network. Suppose the vertices in the network are labelled by the integers 1,2,...,n. Let
(4, 7) denote an ordered pair of vertices in the network (where i is the origin vertex and j the destination
vertex of the arc), z;; the amount of flow in arc (i,7) and d;; the length of the arc (3,7)- The LP
formulation of the problem is thus given as

minimize sziirﬁ subject to Az =b, 0<z<1, (1)
where) L)
+1 if arc j is directed away from vertex 1,
a; =4 -1 ifarcj is directed towards vertex i,
0 otherwise
and

+1 fori=n,,
b=< -1 fori=n,,
0 otherwise.

The above formulation only yields a meaningful solution if z;; = 0 or 1; that is, arc (7,) forms part of
the shortest route only if z;; = 1. In fact since the optimal LP solution will (in theory) always yield z;;
= 0 or 1, (1) can also be solved as an IP problem. Note that the problem may also be solved directly
(and more efficiently) using a variant of Dijkstra’s algorithm (see [6]).

The travelling salesman problem is that of finding a minimum distance route round a given set of cities.
The salesperson must visit each city only once before returning to his or her city of origin. It can be
formulated as an IP problem in a number of ways. One such formulation is described in Williams [5].
There are currently no routines in the Library for solving such problems.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.
HO2BBF solves integer programming problems using a branch and bound method.
HO2BFF solves integer or linear programming problems defined by a MPSX data file.

HO2BUF converts an MPSX data file defining an integer or a linear programming problem to the form
required by HO2BBF or E04MFF.

HO2BVF prints the solution to an integer or a linear programming problem using specified names for
rows and columns.

HO2BZF supplies further information on the optimum solution obtained by HO2BBF.

HO3ABF solves transportation problems. It uses integer arithmetic throughout and so produces exact
results. On a few machines, however, there is a risk of integer overflow without warning, so
the integer values in the data should be kept as small as possible by dividing out any common
factors from the coefficients of the constraint or objective functions.

HO3ADF solves shortest path problems using Dijkstra’s algorithm.

H02BBF, HO2BFF and HO3ABF treat all matrices as dense and hence are not intended for large sparse
problems. For solving large sparse LP problems, use EO4NKF.

4 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have been withdrawn. Advice on replacing calls to these routines
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

HO2BAF]

H.4 [NP3086/18]

H - Operations Research Introduction - H

5 References

[1] Beale E M (1977) Integer Programming The State of the Art in Numerical Analysis (ed D A H
Jacobs) Academic Press

[2] Dantzig G B (1963) Linear Programming and Eztensions Princeton University Press

[3] Mitra G (1973) Investigation of some branch and bound strategies for the solution of mixed integer
linear programs Math. Programming 4 155-170

[4] (1971) MPSX - Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

[5] Williams H P (1990) Model Building in Mathematical Programming (3rd Edition) Wiley

[6] Ahuja R K, Magnanti T L and Orlin J B (1993) Network Flows: Theory, Algorithms, and
Applications Prentice Hall

[NP3086/18] H.5 (last)

H - Operations Research H02BBF

H02BBF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

Warning. The specification of the parameters BIGBND and LIWORK changed at Mark 16: the ‘default’
value of the parameter BIGBND has been increased to 10%° and the minimum dimension of the array
IWORK has been increased by N + 3.

1 Purpose

HO2BBF solves ‘zero-one’, ‘general’, ‘mixed’ or ‘all’ integer programming problems using a branch and
bound method. The routine may also be used to find either the first integer solution or the optimum
integer solution. It is not intended for large sparse problems.

2 Specification

SUBROUTINE HO2BBF(ITMAX, MSGLVL, N, M, A, LDA, BL, BU, INTVAR,

1 CVEC, MAXNOD, INTFST, MAXDPT, TOLIV, TOLFES,
2 BIGBND, X, OBJMIP, IWORK, LIWORK, RWORK, LRWORK,
3 IFAIL)
INTEGER ITMAX, MSGLVL, N, M, LDA, INTVAR(N), MAXNOD,
1 INTFST, MAXDPT, IWORK(LIWORK), LIWORK, LRWORK,
2 IFAIL
real A(LDA,*), BL(N+M), BU(N+M), CVEC(N), TOLIV,
1 TOLFES, BIGBND, X(N), OBJMIP, RWORK(LRWORK)

3 Description

HO2BBF is capable of solving certain types of integer programming (IP) problems using a branch and
bound (B&B) method, see Taha [1]. In order to describe these types of integer programs and to briefly
state the B&B method, we define the following linear programming (LP) problem:

Minimize
F(z)=cizy+ ez + ...+ 2,
subject to
n =
Za.'jlj < 2b, i=12,...,m
ji=1 Z
L<z;<w;, j=12,...,n (1)

If, in (1), it is required that (some or) all the variables take integer values, then the integer program is of
type (mized or) all general IP problem. If additionally, the integer variables are restricted to take only
0-1 values (ie.,l; = 0and u; = 1) then the integer program is of type (mixed or all) zero-one IP problem.

The B&B method applies directly to these integer programs. The general idea of B&B (for a full
description see Dakin [2] or Mitra [3]) is to solve the problem without the integral restrictions as an LP
problem (first node). If in the optimal solution an integer variable z, takes a non-integer value zj, two
LP sub-problems are created by branching, imposing z, < [z}] and z; > [z}] + 1 respectively, where [z}]
denotes the integer part of z}. This method of branching continues until the first integer solution (bound)
is obtained. The hanging nodes are then solved and investigated in order to prove the optimality of the
solution. At each node, an LP problem is solved using E04MFF.

[NP3086/18] HO2BBF.1

HO02BBF H - Operations Research

4

(1]
[2]

(3]

References
Taha H A (1987) Operations Research: An Introduction Macmillan, New York

Dakin R J (1965) A tree search algorithm for mixed integer programming problems Comput. J. 8
250-255

Mitra G (1973) Investigation of some branch and bound strategies for the solution of mixed integer
linear programs Math. Programming 4 155-170

Parameters

ITMAX — INTEGER Input/Output

On entry: an upper bound on the number of iterations for each LP problem.

On ezit: unchanged if on entry ITMAX > 0, else ITMAX = max(50,5x(N+M)).

MSGLVL — INTEGER : Input

On entry: the amount of printout produced by H02BBF, as indicated below (see Section 5.1 for a
description of the printed output). All output is written to the current advisory message unit (as
defined by X04ABF). ’

Value Definition

0 No output.

1 The final IP solution only.

5 One line of output for each node investigated and the final IP solution.

10 The original LP solution (first node), one line of output for each node

investigated and the final IP solution.

N — INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

M — INTEGER Input

On entry: m, the number of general linear constraints.

Constraint: M > 0.

A(LDA %) — real array Input
Note: the second dimension of the array A must be at least N when M > 0, and at least 1 when M
=0.

On entry: the ith row of A must contain the coefficients of the ith general constraint, for
i=1,2,...,m

If M = 0 then the array A is not referenced.

LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which HO2BBF
is called.

Constraint: LDA > max(1,M).

HO2BBF.2 [NP3086/18]

H -

10:

11:

12:

13:

14:

15:

Operations Research H02BBF

BL(N+M) — real array Input
BU(N+M) — real array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables, and
the next m elements the bounds for the general linear constraints (if any). To specify a non-existent
lower bound (i.e., I; = —00), set BL(j) < —BIGBND and to specify a non-existent upper bound
(le., u; = +00), set BU(j) > BIGBND. To specify the jth constraint as an equality, set BL(j) =
BU(j) = B, say, where |f| < BIGBND.

Constraints:

BL(j) < BU(j), for j=1,2,...,N + M,
|8] < BIGBND when BL(j) = BU(j) = 4.

INTVAR(N) — INTEGER array Input

On entry: indicates which are the integer variables in the problem. For example, if z; is an integer
variable then INTVAR(j) must be set to 1, and 0 otherwise.

Constraints:

INTVAR(j) =0or1for j=1,2,...,N, and
INTVAR(j) = 1 for at least one value of j.

CVEC(N) — real array Input

On entry: the coefficients c; of the objective function F(z) = ¢,z + ¢z, + ...+ ¢, z,. The routine
attempts to find a minimum of F(z). If a maximum of F(z) is desired, CVEC(j) should be set to
—c;, for j =1,2,...,n, so that the routine will find a minimum of —F(z).

MAXNOD — INTEGER Input

On entry: the maximum number of nodes that are to be searched in order to find a solution (optimum
integer solution). If MAXNOD < 0 and INTFST < 0, then the B&B tree search is continued until
all the nodes have been investigated.

INTFST — INTEGER Input

On entry: specifies whether to terminate the B&B tree search after the first integer solution (if any)
is obtained. If INTFST > 0 then the B&B tree search is terminated at node k say, which contains
the first integer solution. For MAXNOD > 0 this applies only if ¥ < MAXNOD.

MAXDPT — INTEGER Input
On entry: the maximum depth of the B&B tree used for branch and bound.

Suggested value: MAXDPT = 3 x N/2.
Constraint: MAXDPT > 2.

TOLIV — real Inpui/Output

On entry: the integer feasibility tolerance; i.e., an integer variable is considered to take an integer
value if its violation does not exceed TOLIV. For example, if the integer variable z; is of order unity
then z; is considered to be integer only if (1-TOLIV) < z; < (14+TOLIV).

On ezit: unchanged if on entry TOLIV > 0.0, else TOLIV = 107°.

TOLFES — real ' Input/Output

On entry: the maximum acceptable absolute violation in each constraint at a ‘feasible’ point
(feasibility tolerance); i.e., a constraint is considered satisfied if its violation does not exceed

TOLFES.

On ezit: unchanged if on entry TOLFES > 0.0, else TOLFES = /¢ (where ¢ is the machine
precision).

[NP3086/18] HO2BBF.3

HO02BBF H - Operations Research

16:

17:

18:

19:

20:

21:

22:

23:

BIGBND — real Input/Output

On entry: the ‘infinite’ bound size in the definition of the problem constraints. More precisely, any
upper bound greater than or equal to BIGBND will be regarded as +oo and any lower bound less
than or equal to —BIGBND will be regarded as —oco. =

On ezit: unchanged if on entry BIGBND > 0.0, else BIGBND = 102

X(N) — real array Input/Output

On entry: an initial estimate of the original LP solution.

On ezit: with IFAIL = 0, X contains a solution which will be an estimate of either the optimum
integer solution or the first integer solution, depending on the value of INTFST. If IFAIL = 9, then
X contains a solution which will be an estimate of the best integer solution that was obtained by
searching MAXNOD nodes.

OBJMIP — real Output

On ezit: with IFAIL = 0 or 9, OBIJMIP contains the value of the objective function for the IP
solution.

IWORK(LIWORK) — INTEGER array Workspace

LIWORK — INTEGER Input
On entry: the dimension of the array IWORK as declared in the (sub)program from which HO2BBF

is called.

Constraint: LIWORK > (2564+N+M) x MAXDPT + 5 x N+ M + 4.

RWORK(LRWORK) — real array Workspace

LRWORK — INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which HO2BBF
is called.

Constraint: LRWORK > MAXDPT x (N41) 4+ 2 x MIN(N,M+1)? + 14 x N + 12 x M.

If MSGLVL > 0, the amounts of workspace provided and required (with MAXDPT = 3 x N/2) are
printed. As an alternative to computing MAXDPT, LIWORK and LRWORK from the formulas
given above, the user may prefer to obtain appropriate values from the output of a preliminary
run with the values of MAXDPT, LIWORK and LRWORK set to 1. If however only LIWORK
and LRWORK are set to 1, then the appropriate values of these parameters for the given value of
MAXDPT will be computed and printed unless MAXDPT < 2. In both cases HO2BBF will then
terminate with IFAIL = 6.

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On ezit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).
For this routine, because the values of output parameters may be useful even if IFAIL # 0 on exit,

users are recommended to set IFAIL to —1 before entry. It is then essential to test the value of
IFAIL on exit.

HO2BBF 4 [NP3086/18]

H - Operations Research H02BBF

5.1 Description of Printed Output

The level of printed output from HO2BBF is controlled by the user (see the description of MSGLVL in
Section 5).

When MSGLVL > 0, the summary printout at the end of execution of H02BBF includes a listing of
the status of every variable and constraint. Note that default names are assigned to all variables and
constraints. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j = 1,2,...,n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed at
its current value). If Value lies outside the upper or lower bounds by more than the
feasibility tolerance, State will be ++ or -- respectively.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. (None indicates that BL(j) <
—BIGBND.) Note that if INTVAR(j) = 1, then the printed value of Lower Bound for
the jth variable may not be the same as that originally supplied in BL(j).

Upper Bound is the upper bound specified for the variable. (None indicates that BU(j) > BIGBND.)

Note that if INTVAR(j) = 1, then the printed value of Upper Bound for the jth
variable may not be the same as that originally supplied in BU(j).

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This will
be zero if State is FR or TF. If = is optimal, the multiplier should be non-negative if
State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its bounds BL(j) and
BU(j).

The meaning of the printout for general constraints is the same as that given above for variables, except
that ‘variable’ is replaced by ‘constraint’, BL(j) and BU(j) are replaced by BL(n + j) and BU(n + j)
respectively, and with the following change in the heading.

L Con gives the name (L) and index j, for j = 1,2,...,m of the constraint.

When MSGLVL > 1, the summary printout at the end of every node during the execution of H02BBF is
a listing of the outcome of forcing an integer variable with a non-integer value to take a value within its
specified lower and upper bounds.

Node No is the current node number of the B&B tree being investigated.
Parent Node is the parent node number of the current node.
Obj Value is the final objective function value. If a node does not have a feasible solution then

No Feas Soln is printed instead of the objective function value. If a node whose
optimum solution exceeds the best integer solution so far is encountered (i.e., it does
not pay to explore the sub-problem any further), then its objective function value is
printed together with a 0 (Cut Off).

Varbl Chosen is the index of the integer variable chosen for branching.

Value Before is the non-integer value of the integer variable chosen.

Lower Bound is the lower bound value that the integer variable is allowed to take.
Upper Bound is the upper bound value that the integer variable is allowed to take.
Value After is the value of the integer variable after the current optimization.
Depth is the depth of the B&B tree at the current node.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

[NP3086/18] HO02BBF.5

HO02BBF H - Operations Research

IFAIL =1

No feasible integer point was found, i.e., it was not possible to satisfy all the integer variables
to within the integer feasibility tolerance (determined by TOLIV). Increase TOLIV and rerun
HO02BBF.

IFAIL = 2

The original LP solution appears to be unbounded. This value of IFAIL implies that a step as
large as BIGBND would have to be taken in order to continue the algorithm (see Section 8).

IFAIL = 3

No feasible point was found for the original LP problem, i.e., it was not possible to satisfy all
the constraints to within the feasibility tolerance (determined by TOLFES). If the data for the
constraints are accurate only to the absolute precision o, the user should ensure that the value
of the feasibility tolerance is greater than o. For example, if all elements of A are of order unity
and are accurate only to three decimal places, the feasibility tolerance should be at least 10°3 (see

Section 8).

IFAIL = 4

The maximum number of iterations (determined by ITMAX) was reached before normal
termination occurred for the original LP problem (see Section 8).

IFAIL = 5
Not used by this routine.

IFAIL = 6

An input parameter is invalid.

IFAIL = 7

The IP solution reported is not the optimum IP solution. In other words, the B&B tree search for
at least one of the branches had to be terminated since an LP sub-problem in the branch did not
have a solution (see Section 8).

IFAIL = 8
The maximum depth of the B&B tree used for branch and bound (determined by MAXDPT) is
too small. Increase MAXDPT (along with LIWORK and/or LRWORK if appropriate) and rerun
HO02BBF.

IFAIL = 9
The IP solution reported is the best IP solution for the number of nodes (determined by MAXNOD)
investigated in the B&B tree.

IFAIL = 10

No feasible integer point was found for the number of nodes (determined by MAXNOD)
investigated in the B&B tree.

Overflow

It may be possible to avoid the difficulty by increasing the magnitude of the feasibility tolerance
(TOLFES) and rerunning the program. If the message recurs even after this change, see Section
8.

7 Accuracy

The routine implements a numerically stable active set strategy and returns solutions that are as accurate
as the condition of the problem warrants on the machine.

.

HO2BBF.6 [NP3086/18]

H - Operations Research H02BBF

8 Further Comments

The original LP problem may not have an optimum solution, l.e., HO02BBF terminates with IFAIL =
2,3,4 or overflow may occur. In this case, the user is recommended to relax the integer restrictions of the

problem and try to find the optimum LP solution by using EO4MFF instead.

In the B&B method, it is possible for an LP sub-problem to terminate without finding a solution. This
may occur due to the number of iterations exceeding the maximum allowed. Therefore the B&B tree
search for that particular branch cannot be continued. Thus the final IP solution reported is not the
optimum IP solution (IFAIL = 7). For the second and unlikely case, a solution could not be found despite
a second attempt at an LP solution.

9 Example

To solve the integer programming problem:

maximize
F(Z) = 31‘1 + 41:2

subject to the bounds

and to the general constraints
2z, + 52, < 15

2z, — 22, <5
3z, 4+ 22, 2> 5
where z, and z, are integer variables.
The initial point, which is feasible, is
zo = (1, 1)7,
and F(zy) = 7.
The optimal solution is
z* = (2,2)7,

and F(z*) = 14.

Note that maximizing F(z) is equivalent to minimizing —F(z).

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

HO2BBF Example Program Text
Mark 16 Revised. NAG Copyright 1993.

* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, MMAX
PARAMETER (NMAX=10,MMAX=10)
INTEGER LDA
PARAMETER (LDA=MMAX)
INTEGER LIWORK, LRWORK
PARAMETER (LIWORK=1000,LRWORK=1000)
* .. Local Scalars ..
real BIGBND, OBJMIP, TOLFES, TOLIV
INTEGER I, IFAIL, INTFST, ITMAX, J, M, MAXDPT, MAXNOD,
+ MSGLVL, N

[NP3086/18] HO2BBF.7

H02BBF

* O* H *

+

H - Operations Research

. Local Arrays .. ’
real A(LDA,NMAX), BL(MMAX+NMAX), BU(MMAX+NMAX),

CVEC(NMAX), RWORK(LRWORK), X(NMAX)
INTEGER INTVAR(NMAX), IWORK(LIWORK)
. External Subroutines ..
EXTERNAL HO2BBF

. Executable Statements ..
WRITE (NOUT,#*) ’HO2BBF Example Program Results’
Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN

Read ITMAX, MSGLVL, MAXNOD, INTFST, MAXDPT, TOLFES, TOLIV,
CVEC, A, BIGBND, BL, BU, INTVAR and X from data file

READ (NIN,*) ITMAX, MSGLVL
READ (NIN,*) MAXNOD

READ (NIN,*) INTFST, MAXDPT
READ (NIN,*) TOLFES, TOLIV
READ (NIN,*) (CVEC(I),I=1,N)
READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
READ (NIN,*) BIGBND

READ (NIN,*) (BL(I),I=1,N+M)
READ (NIN,*) (BU(I),I=1,N+M)
READ (NIN,*) (INTVAR(I),I=1,N)
READ (NIN,*) (X(I),I=1,N)

Solve the IP problem
IFAIL = -1
CALL HO2BBF(ITMAX,MSGLVL,N,M,A,LDA,BL,BU,INTVAR,CVEC,MAXNOD,

INTFST,MAXDPT,TOLIV,TOLFES,BIGBND,X,0BJMIP, IWORK,
LIWORK,RWORK,LRWORK,IFAIL)

END IF

STOP

END

9.2 Program Data

HO2BBF Example Program Data

2

o O OO

|
w
O O O oo

.0

= = 2O WNN

.0

HO2BBF.8

3
1

4

:Values of N and M

0 :Values of ITMAX and MSGLVL

:Value of MAXNOD

:Values of INTFST and MAXDPT

:End of CVEC

NN OV O
O OO OO0

:End of matrix A

.0E+20 :Value of BIGBND

0.0 -1.0E+20 -1.0E+20 5.0 :End of BL

.OE+20 1.0E+20 15.0 5.0 1.0E+20 :End of BU

1 :End of INTVAR
1.0 :End of X

:Values of TOLFES and TOLIV

[NP3086/18]

H - Operations Research

9.3 Program Results

HO02BBF

HO2BBF Example Program Results

*** HO2BBF

#%x* Start of NAG Library implementation details ***

Implementation title:
Precision:

Product Code:

Mark:

Generalised Base Version
FORTRAN double precision
FLBAS18D

184

x* End of NAG Library implementation details *

Parameters

Linear constraints...... 3 First integer solutionm.. OFF
Variables............... 2 Max depth of the tree... 4
Feasibility tolerance... 1.05D-08 Print level............. 10
Infinite bound size..... 1.00D+20 EPS (machine precision). 1.11D-16
Integer feasibility tol. 1.00D-05 Iteration limit......... 50
Max number of nodes..... NONE

** Workspace provided with MAXDPT = 4: LRWORK = 1000 LIWORK = 1000

** Workspace required with MAXDPT = 4: LRWORK = 84 LIWORK = 137

*** Optimum LP solution *** -17.50000

Varbl State Value
vV 1 FR 3.92857
v 2 FR 1.42857

L Con State Value

L 1 UL 15.0000
L 2 UL 5.00000
L 3 FR 14.6429

Lower Bound Upper Bound Lagr Mult Residual
0.000000E+00 None 0.0000E+00 3.929
0.000000E+00 None 0.0000E+00 1.429

Lower Bound Upper Bound Lagr Mult Residual
None 15.0000 -1.0000 0.0000E+00
None 5.00000 -0.5000 -8.8818E-16

5.00000 None 0.0000E+00 9.643

*** Start of tree search **x*

Node Parent 0bj
No Node Value

2 i No Feas
3 1 -16.2
4 3 -15.5
5 3 -13.0

Varbl Value Lower Upper Value Depth
Chosen Before Bound Bound After
Soln 1 3.93 4.00 None 4.00 1
1 3.93 0.000E+00 3.00 3.00 1
2 1.80 2.00 None 2.00 2
2 1.80 0.000E+00 1.00 1.00 2

x Integer solution *

[NP3086/18]

HO2BBF'.9

H02BBF H - Operations Research

Node Parent 0bj Varbl Value Lower Upper Value Depth
No Node Value Chosen Before Bound Bound After
6 4 No Feas Soln 1 2.50 3.00 3.00 3.00 3
7 4 -14.8 1 2.50 0.000E+00 2.00 2.00 3
8 7 -12.0 co 2 2.20 3.00 None 3.00 4
9 7 -14.0 2 2.20 2.00 2.00 2.00 4

*** Integer solution **x

*** End of tree search **x*

Total of 9 nodes investigated.

Exit HO2BBF - Optimum IP solution found.

Final IP objective value = =-14.00000

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

v 1 UL 2.00000 0.000000E+00 2.00000 -3.000 0.0000E+00
vV 2 EQ 2.00000 2.00000 2.00000 -4.000 0.0000E+00
L Con State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 FR 14.0000 None 15.0000 0.0000E+00 1.000

L 2 FR 0.000000E+00 None 5.00000 0.0000E+00 5.000

L 3 FR 10.0000 5.00000 None 0.0000E+00 5.000

HO2BBF.10 (last) [NP3086/18]

H - Operations Research HO02BFF

HO2BFF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

HO2BFF solves linear or integer programming problems specified in MPSX input format. It is not
intended for large sparse problems.

2 Specification

SUBROUTINE HO2BFF(INFILE, MAXN, MAXM, OPTIM, XBLDEF, XBUDEF,

1 MAXDPT, MSGLVL, N, M, X, CRNAME, IWORK, LIWORK,
RWORK, LRWORK, IFAIL)

INTEGER INFILE, MAXN, MAXM, MAXDPT, MSGLVL, N, M,

1 IWORK(LIWORK), LIWORK, LRWORK, IFAIL

real XBLDEF, XBUDEF, X(MAXN), RWORK(LRWORK)

CHARACTER#3 OPTIM

CHARACTER#*8 CRNAME (MAXN+MAXM)

3 Description

HO2BFF solves linear programming (LP) or integer programming (IP) problems specified in MPSX [1]
input format. It calls either EO4MFF (to solve an LP problem) or HO2BBF and H02BZF (to solve an IP
problem); these routines are designed to solve problems of the form

minimize ¢’ z subject to I < (:z:) <u

z€R"

where ¢ is an n element vector and A is an m by n matrix (i.e., there are n variables and m general
linear constraints). HO2BBF is used if at least one of the variables is restricted to take an integer value
at the optimum solution. The document for HO2BUF should be consulted for a detailed description of
the MPSX format.

In the MPSX data file the first free row, that is, a row defined with the row type N, is taken as the
objective row. Similarly, if there are more than one RHS, RANGES or BOUNDS sets, then the first set
is used for the optimization. HO2BFF also prints the solution to the problem using the row and column
names specified in the MPSX data file (by calling HO2BVF).

4 References

[1] (1971) MPSX - Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

5 Parameters

1: INFILE — INTEGER Input
On entry: the unit number associated with the MPSX data file.

Constraint: 0 < INFILE < 99.
2: MAXN — INTEGER Input

On entry: an upper limit for the number of variables in the problem.

Constraint: MAXN > 1.

[NP3086/18] HO2BFF.1

HO02BFF H - Operations Research

3: MAXM — INTEGER Input

On entry: an upper limit for the number of constraints (including the objective) in the problem.

Constraint: MAXM > 1.

4: OPTIM — CHARACTER*3 Input
On entry: specifies the direction of the optimization. OPTIM must be set to "MIN’ for minimization
and to 'MAX’ for maximization.

Constraint: OPTIM = 'MIN’ or 'MAX’.

5: XBLDEF — real Input

On entry: the default lower bound to be used for the variables in the problem, when none is specified
in the BOUNDS section of the MPSX data file. For a standard LP or IP problem XBLDEF would
normally be set to zero.

6: XBUDEF — real Input

On entry: the default upper bound to be used for the variables in the problem, when none is specified
in the BOUNDS section of the MPSX data file. For a standard LP or IP problem XBUDEF would
normally be set to ‘infinity’ (i.e., XBUDEF > 1020).

Constraint: XBUDEF > XBLDEF.

7: MAXDPT — INTEGER Input
On entry: for an IP problem, MAXDPT must specify the maximum depth of the branch and bound
tree.

Constraint: MAXDPT > 2.

For an LP problem, MAXDPT is not referenced.

8: MSGLVL — INTEGER Input

On entry: the amount of printout produced by E04MFF or H02BBF, as indicated below. For a
description of the printed output see Section 8.2 of the document for EO4MFF or Section 5.1 of the
document for HO2BBF (as appropriate). All output is written to the current advisory message unit
(as defined by X04ABF).

For an LP problem (E04MFF):

Value Definition

0 No output.

1 The final solution only.

5 One line of output for each iteration (no printout of the final solution).
10 The final solution and one line of output for each iteration.

For an IP problem (H02BBF):

Value Definition

0 No output.

1 The final IP solution only.

5 One line of output for each node investigated and the final IP solution.

10 The original LP solution (first node) with dummy names for the rows and

columns, one line of output for each node investigated and the final IP solution
with MPSX names for the rows and columns.

9: N — INTEGER QOutput

On ezit: n, the actual number of variables in the problem.

.

HO2BFF.2 [NP3086/18]

H -

10:

11:

12:

13:

14:

15:

16:

17:

Operations Research HO02BFF

M — INTEGER Output

On ezit: m, the actual number of general linear constraints in the problem.

X(MAXN) — real array Output
On ezit: the solution to the problem, stored in X(1),X(2),.. ., X(N). X(¢) is the value of the variable
whose MPSX name is stored in CRNAME(:), for i = 1,2,...,N.

CRNAME(MAXN+MAXM) — CHARACTER*8 array ' Output

On ezit: the first N elements contain the MPSX names for the variables in the problem.

IWORK(LIWORK) — INTEGER array Output

On ezit: the first (N+M) elements contain ISTATE (the status of the constraints in the working set
at the solution). Further details can be found in Section 5 of the document for EO4MFF or Section

5 of the document for HO2BZF (as appropriate).

LIWORK — INTEGER Input

On entry: the dimension of the array INORK as declared in the (sub)program from which HO2BFF
is called.

Constraints:

For an LP problem, LIWORK > 4 x MAXN + MAXM + 3.

For an IP problem, LIWORK > (25+MAXN+MAXM) x MAXDPT + 7 x MAXN + 2 x
MAXM + 4.

RWORK(LRWORK) — real array Output

On ezit: the first (N+M) elements contain BL (the lower bounds), the next (N+M) elements contain
BU (the upper bounds) and the next (N+M) elements contain CLAMDA (the Lagrange multipliers).
Further details can be found in Section 5 of the document for EO4MFF or Section 5 of the document
for HO2BZF (as appropriate). Note that for an IP problem the contents of BL and BU may not be
the same as those originally specified by the user in the MPSX data file and/or via the parameters
XBLDEF and XBUDEF.

LRWORK — INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which HO2BFF
is called.

Constraints:

For an LP problem, LRWORK > 2 x MIN(MAXN,MAXM+1)? + MAXM x MAXN + 12 x
MAXN + 9 x MAXM.

For an IP problem, LRWORK > MAXDPT x (MAXN+1) 4+ 2 x MIN(MAXN,MAXM+1)?
+ MAXM x MAXN + 19 x MAXN + 15 x MAXM.

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP3086/18] HO2BFF.3

HO02BFF H - Operations Research

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL=:<0
Either MAXM and/or MAXN are too small or the MPSX data file is non-standard and/or corrupt.

This corresponds to IFAIL = —i in Section 6 of the document for HO2BUF.
IFAIL = 1

X is a weak local minimum. This means that the solution is not unique.

IFAIL = 2

The solution appears to be unbounded. This value of IFAIL implies that a step as large as XBUDEF
would have to be taken in order to continue the algorithm. See Section 8.

IFAIL = 3

No feasible point was found, i.e., it was not_possible to satisfy all the constraints to within the
feasibility tolerance (defined internally as v/machine precision). See Section 8.

IFAIL = 4

The maximum number of iterations (defined internally as max(50,5(n + m))) was reached before
normal termination occurred. See Section 8.

IFAIL =5

An input parameter is invalid. Refer to the printed output to determine which parameter must be
re-defined.

IFAIL = 6

A serious error has occurred in an internal call to either EO4MFF or HO2BBF (as appropriate).
Check all subroutine calls and array dimensions.

For an IP problem only:

IFAIL =7

The solution reported is not the optimum solution. See Section 8.

IFAIL = 8
MAXDPT is too small. Try increasing its value (along with that of LIWORK and/or LRWORK
if appropriate) and rerun HO2BFF.

IFAIL = 9

No feasible integer point was found, i.e., it was not possible to satisfy all the integer variables to
within the integer feasibility tolerance (defined internally as 107°). See Section 8.

7 Accuracy

The routine implements a numerically stable active set strategy and returns solutions that are as accurate
as the condition of the problem warrants on the machine.

v

HO2BFF .4 [NP3086/18]

H - Operations Research HO02BFF

8 Further Comments

For an LP problem only:

if IFAIL = 2 on exit, users can obtain more information by making separate calls to HO2BUF,
E04MFF and HO2BVF (in that order). Note that this will (by default) cause the final LP solution
to be printed twice on the current advisory message unit (see X04ABF), once with dummy names
for the rows and columns and once with user supplied names. To suppress the printout of the final
LP solution with dummy names for the rows and columns, include the statement

CALL EO4MHF(’ Print Level = 5 ’)

prior to calling EO4MFF.

if IFAIL = 3 on exit, users are recommended to reset the value of the feasibility tolerance and
rerun HO2BFF. (Further advice is given under the description of IFAIL = 3 in Section 6 of the
document for EO4MFF). For example, to reset the value of the feasibility tolerance to 0.01, include
the statement

CALL EO4MHF(’ Feasibility Tolerance = 0.01 ’)

prior to calling HO2BFF.

if IFAIL = 4 on exit, users are recommended to increase the maximum number of iterations allowed
before termination and rerun HO2BFF. For example, to increase the maximum number of iterations
to 500, include the statement

CALL EO4MHF(’ Iteratiom Limit = 500 ’)

prior to calling HO2BFF.

Note that HO2BUF uses an ‘infinite’ bound size of 10%° in the definition of I and u. In other words,
any element of u greater than or equal to 102° will be regarded as +oo (and similarly any element of
I less than or equal to —10%° will be regarded as —oo). If this value is deemed to be ‘inappropriate’,
users are recommended to reset the value of the ‘infinite’ bound size and make any necessary changes
to BL and/or BU prior to calling EO4MFF. For example, to reset the value of the ‘infinite’ bound
size to 10000, include the statement

CALL EO4MHF(’ Infinite Bound Size = 1.0E+4 ’)

prior to calling EO4MFF.
For an IP problem only:

if IFAIL = 2,3,4,7 or 9 on exit, users can obtain more information by making separate calls to
HO02BUF, H02BBF, H02BZF and HO2BVF (in that order).

Note that HO2BUTF uses an ‘infinite’ bound size of 10%° in the definition of ! and u. In other words,
any element of u greater than or equal to 10%° will be regarded as +oo (and similarly any element of
I less than or equal to —102° will be regarded as —oo). If this value is deemed to be ‘inappropriate’,
users are recommended to reset the value of the parameter BIGBND (as described in Section 5
of the document for HO2BBF) and make any necessary changes to BL and/or BU prior to calling
HO2BBF.

9 Example

This example solves the same problem as the example for HO2BUF, except that it treats it as an IP
problem.

One of the applications of integer programming is to the so-called diet problem. Given the nutritional
content of a selection of foods, the cost of each food, the amount available of each food and the consumer’s
minimum daily energy requirements, the problem is to find the cheapest combination. This gives rise to
the following problem:

v

[NP3086/18] HO2BFF.5

HO02BFF

minimize

subject to

where

H - Operations Research

Az > b,
0<z<u,

c=(3241392019)7, 2 = (z,,2,, 23,24, 5, 25) ",

z,,z, and z4 are real,

z4,z, and 4 are integer,

110 205 160 160 420 260 2000
A= 4 32 13 8 4 14 |, b= 55 | and
2 12 54 285 22 80 800

u=(432822)T.

The rows of A correspond to energy, protein and calcium and the columns of A correspond to oatmeal,
chicken, eggs, milk, pie and bacon respectively.

The MPSX data representation of this problem is given in Section 9.2.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* HO2BFF Example Program Text
Mark 18 Revised. NAG Copyright 1997.
* .. Parameters .
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MAXN, MAXM
PARAMETER (MAXN=50,MAXM=50)
real XBLDEF, XBUDEF
PARAMETER (XBLDEF=0.0e0,XBUDEF=1.0e+20)
INTEGER MAXDPT
PARAMETER (MAXDPT=3*MAXN/2)
INTEGER MSGLVL
PARAMETER (MSGLVL=5)
INTEGER LIWORK
PARAMETER (LIWORK=(25+MAXN+MAXM)*MAXDPT+2*MAXM+7*MAXN+4)
INTEGER LRWORK
PARAMETER (LRWORK=MAXDPT* (MAXN+1)
+ +2¥MAXN**2+MAXM*MAXN+19+MAXN+15%MAXM)
CHARACTER*3 OPTIM
PARAMETER (OPTIM="MIK’)
* .. Local Scalars ..
INTEGER IFAIL, INFILE, M, XN
* .. Local Arrays ..
real RWORK (LRWORK), X(MAXN)
INTEGER IWORK (LIWORK)
CHARACTER*8 CRNAME (MAXN+MAXM)
* .. External Subroutines ..
EXTERNAL HO2BFF
* .. Executable Statements ..

WRITE (NOUT,*) 'HO2BFF Example Program Results’

HO2BFF.6

[NP3086/18]

H - Operations Research

* Skip heading in data file
READ (NIN,*)

* Solve the problem
INFILE = NIN
IFAIL = 0

CALL HO2BFF(INFILE,MAXN,MAXM,OPTIM,XBLDEF,XBUDEF,MAXDPT,MSGLVL,N,
M,X,CRNAME, IWORK,LIWORK, RWORK ,LRWORK,IFAIL)

STOP
END

9.2 Program Data

HO2BFF Example Program Data

NAME
ROWS
G ENERGY
G PROTEIN
G CALCIUM
N COST
COLUMNS
OATMEAL
OATMEAL
OATMEAL
OATMEAL
CHICKEN
CHICKEN
CHICKEN
CHICKEN
INTEGER
EGGS
EGGS
EGGS
EGGS
MILK
MILK
MILK
MILK
PIE
PIE
PIE
PIE
INTEGER
BACON
BACON
BACON
BACON
RHS
DEMANDS
DEMANDS
DEMANDS

[NP3086/18]

DIET

ENERGY
PROTEIN
CALCIUM
COST
ENERGY
PROTEIN
CALCIUM
CcOsT
’MARKER’
ENERGY
PROTEIN
CALCIUM
COsT
ENERGY
PROTEIN
CALCIUM
COST
ENERGY
PROTEIN
CALCIUM
COST
’MARKER’
ENERGY
PROTEIN
CALCIUM
CcOST

ENERGY
PROTEIN
CALCIUM

110.0
4.0
2.0
3.0
205.0
32.0
12.0
24.0

160.0
13.0
54.0
13.0
160.0

285.0

260.0
14.0
80.0
19.0

2000.0
565.0
800.0

*INTORG’

’INTEND’

HO2BFF

HO2BFF.7

HO02BFF H - Operations Research

BOUNDS

UI SERVINGS OATMEAL
UI SERVINGS CHICKEN
UP SERVINGS EGGS

UP SERVINGS MILK

UP SERVINGS PIE

UI SERVINGS BACON
ENDATA

NN 00N W
O OO O OO

9.3 Program Results
HO2BFF Example Program Results

*** HO2BBF
*** Start of NAG Library implementation details **x*

Implementation title: Generalised Base Version
Precision: FORTRAN double precision
Product Code: FLBAS18D
Mark: 18A

*x**x End of NAG Library implementation details **x

Parameters
Linear constraints...... 3 First integer solution.. OFF
Variables............... 6 Max depth of the tree... 75
Feasibility tolerance... 1.05E-08 Print level............. 5
Infinite bound size..... 1.00E+20 EPS (machine precision). 1.11E-16
Integer feasibility tol. 1.00E-05 Iteration limit......... 50
Max number of nodes..... NONE
** Workspace provided with MAXDPT = 75: LRWORK = 10075 LIWORK = 9679
** Workspace required with MAXDPT = 75: LRWORK = 677 LIWORK = 2587
*x*x Optimum LP solution **x* 92.50000
*x*x Start of tree search **x*
Node Parent 0bj Varbl Value Lower Upper Value Depth
No Node Value Chosen Before Bound Bound After
2 1 93.2 4 4.50 5.00 8.00 5.00 1
3 1 93.8 4 4.50 0.000E+00 4.00 4.00 1
4 2 94.8 5 1.81 2.00 2.00 2.00 2
5 2 96.1 5 1.81 0.000E+00 1.00 1.00 2
6 3 96.9 6 0.308 1.00 2.00 1.00 2
7 3 94.5 6 0.308 0.000E+00 0.000E+00 0.000E+00 2
8 7 96.5 3 0.500 1.00 2.00 1.00 3
9 7 97 .4 3 0.500 0.000E+00 0.000E+00 0.00CE+00 3
10 4 97.0 1 3.27 4.00 4.00 4.00 3

x Integer solution ***

.

HO2BFF.8 [NP3086/18]

H - Operations Research

Node Parent

No
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Node
4
11
11
5
5
13
13
17
17
15
15
8
8
21
21
6
6

0Obj
Value
95.7
99.5
96.2
97.3
96.5
107.
96.4
103.
97.5
101.
96.6
97.2
98.5
100.
97.3
97.0
105.

co

co

co

co
co
co

co
co
co
co
co
co

Varbl

Chosen

1

DD WW O WWoO O P DD

***x End of tree search ***

Total of
Exit HO2BBF - Optimum IP solution found.

Final IP objective value

Varbl

OATMEAL
CHICKEN
EGGS
MILK
PIE
BACON

L Con

ENERGY

PROTEIN
CALCIUM

27 nodes investigated.

State

EQ
LL
LL
LL
EQ
LL

State

FR
FR
FR

Value

4.00000

0.000000E+00
0.000000E+00

5.00000
2.00000

0.000000E+00

Value

2080.00
64.0000
1477.00

Value

Before

3.27
5.19
5.19
7.13
7.13
.115
.115
.188
.188

O O OO0 OO0

3.50
3.50
0.1256
0.125
2.88
2.88

97.00000

Lower Bound

4.00000

0.000000E+00
0.000000E+00

5.00000
2.00000

0.000000E+00

Lower Bound

2000.00
55.0000
800.000

Lower
Bound
0.000E+00
6.00
5.00
8.00
5.00
1.00
0.000E+00
1.00
0.000E+00

.769E-01 1.00
.7T69E-01 0.000E+00

4.00
0.000E+00

1.00
0.000E+00

3.00
0.000E+00

Upper Bound

4.00000
3.00000
2.00000
8.00000
2.00000
2.00000

Upper Bound
None

None
None

HO2BFF

Upper Value Depth
Bound After
3.00 3.00 3
8.00 6.00 4
5.00 5.00 4
8.00 8.00 3
7.00 7.00 3
2.00 1.00 5
0.000E+00 0.000E+00 5
2.00 1.00 6
0.000E+00 0.000E+00 6
2.00 1.00 4
0.000E+00 0.000E+00 4
4.00 4.00 4
3.00 3.00 4
2.00 1.00 5
0.000E+00 0.000E+00 5
4.00 3.00 3
2.00 2.00 3
Lagr Mult Residual
3.000 0.0000E+00
24.00 0.0000E+00
13.00 0.0000E+00
9.000 0.0000E+00
20.00 0.0000E+00
19.00 0.0000E+00
Lagr Mult Residual
0.0000E+00 80.00
0.0000E+00 9.000
0.0000E+00 677.0

[NP3086/18]

HO2BFF.9 (last)

H — Operations Research HO02BUF

HO02BUF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

HO2BUF reads data for a linear or integer programming problem from an external file which is
in standard or compatible MPSX input format.

Specification

SUBROUTINE HO2BUF (INFILE, MAXN, MAXM, OPTIM, XBLDEF, XBUDEF, NMOBJ,
1 NMRHS, NMRNG, NMBND, MPSLST, N, M, A, BL, BU, CVEC,
2 X, INTVAR, CRNAME, NMPROB, IWORK, IFAIL)

INTEGER INFILE, MAXN, MAXM, N, M, INTVAR(MAXN),

1 IWORK (MAXN+MAXM), IFAIL

real XBLDEF, XBUDEF, A(MAXM,MAXN), BL(MAXN+MAXM),

1 BU (MAXN+MAXM), CVEC(MAXN), X(MAXN)

CHARACTER*3 OPTIM
CHARACTER*8 NMOBJ, NMRHS, NMRNG, NMBND, CRNAME (MAXN+MAXM), NMPROB
LOGICAL MPSLST

Description

HO2BUF reads linear programming (LP) or integer programming (IP) problem data from an
external file which is prepared in standard or compatible MPSX [1] input format and then
initializes »n (the number of variables), m (the number of general linear constraints), the vectors
¢,] and u and the m by n matrix A for use with EO4MFF or HO2BBF, which are designed to solve
problems of the form

minimize ¢’x subjectto ! < (x) < u
<€R" Ax

This routine may be followed by calls to either EO4MFF (to solve an LP problem) or HO2BBF

and HO2BZF (to solve an IP problem), possibly followed by a call to HO2BVF (to print the

solution using MPSX names).

Note that HO2BUF uses an ‘infinite’ bound size of 10 in the definition of / and u. In other
words, any element of u greater than or equal to 10% will be regarded as +o (and similarly any
element of / less than or equal to —10% will be regarded as —eo). If this value is deemed to be
‘inappropriate’, users are recommended to reset the value of either the optional parameter
Infinite Bound Size (if an LP problem is being solved) or the parameter BIGBND (if an IP
problem is being solved) and make any necessary changes to BL and/or BU prior to calling
E04MFF or HO2BBF (as appropriate).

The documents for HO2BVF, EO4MFF and/or HO2BBF and HO2BZF should be consulted for
further details.

MPSX input format
The input file of data may only contain two types of lines:

1. Indicator lines (specifying the type of data which is to follow).
2. Data lines (specifying the actual data).

The input file must not contain any blank lines. Any characters beyond column 80 are ignored.
Indicator lines must not contain leading blank characters (in other words they must begin in
column 1). The following displays the order in which the indicator lines must appear in the file:

NAME user-given name
ROWS

data line(s)
COLUMNS

data line(s)

[NP2478/16}) Page 1

H02BUF H — Operations Research

RHS
data line(s)
RANGES (optional)
data line(s)
BOUNDS (optional)
data line(s)
ENDATA

The ‘user-given name’ specifies a name for the problem and must occupy columns 15-22. The
name can either be blank or up to a maximum of 8 characters.

A data line follows the same fixed format made up of fields defined below. The contents of the
fields may have different significance depending upon the section of data in which they appear.

Field1 Field2 Field3 Field4 Field5 Field 6

Columns 2-3 5-12 15-22 25-36 4047 50-61
Contents Code Name Name Value Name Value

The names and codes consist of ‘alphanumeric’ characters (i.e. a-z, A-Z, 09, +, —, asterisk (*),
blank (), colon (:), dollar sign ($) or fullstop (.) only) and the names must not contain
leading blank characters. Values are read using Fortran format E12.0. This allows values to be
entered in several equivalent forms. For example, 1.2345678, 1.2345678E+0, 123.45678E~2 and
12345678E-07 all represent the same number. It is safest to include an explicit decimal point.

Note that in order to ensure numeric values are interpreted as intended, they should be
right-justified in the 12-character field, with no trailing blanks. This is because in some situations
trailing blanks may be interpreted as zeros and this can dramatically affect the interpretation of
the value. This is relevant if the value contains an exponent, or if it contains neither an exponent
nor an explicit decimal point. For example, the fields

%¥%%%1.23E-2%
FTHEHHE¥123%%

may be interpreted as 1.23E-20 and 12300 respectively (where % is used to denote a blank). The
actual behaviour is system-dependent.

Comment lines are allowed in the data file. These must have an asterisk (*) in column 1 and any
characters in columns 2-80. In any data line, a dollar sign ($) as the first character in field 3 or
5 indicates that the information from that point through column 80 consists of comments.

Columns outside the six fields must be blank, except for columns 72-80, whose contents are
ignored by the routine. These columns may be used to enter a sequence number. A non-blank
character outside the predefined six fields and columns 72-80 is considered to be a major error
(IFAIL = 11; see Section 6), unless it is part of a comment.

ROWS Data Lines
These lines specify row (constraint) names and their inequality types (i.e. =, 2 or <).

Field 1: defines the constraint type. It may be in column 2 or column 3.
N free row, that is no constraint. It may be used to define the objective
row.
G greater than or equal to (i.e. 2).
L less than or equal to (i.e. <).
E exactly equal to (i.e. =).
Field 2: defines the row name.

Row type N stands for ‘Not binding’, also known as ‘Free’. It can be used to define the objective
row. The objective row is a free row that specifies the vector ¢ in the objective function. It is
taken to be the first free row, unless some other free row name is specified by the parameter
NMOBJ (see Section 5). Note that the objective function must be included in the MPSX data
file. Thus the maximum number of constraints (MAXM; see Section 5) in the problem must be
m+1.

Page 2 [NP2478116)

H — Operations Research HO02BUF

COLUMNS Data Lines

These lines specify the names to be assigned to the variables (columns) in the constraint matrix
A, and define, in terms of column vectors, the actual values of the corresponding matrix
elements.

Field 1: blank (ignored)

Field 2: gives the name of the column associated with the elements specified in the
following fields.

Field 3: contains the name of a row.

Field 4: used in conjunction with field 3 contains the value of the matrix element.
Field 5: is optional (may be used like field 3).

Field 6: is optional (may be used like field 4).

Note that only non-zero elements of A need to be specified in the COLUMNS section, as any
unspecified elements are assumed to be zero.

RHS Data Lines

This section specifies the right hand side values of the constraint matrix A. The lines specify the
name of the RHS (right hand side) vector given to the problem, the numerical values of the
elements of the vector are also defined by the data lines and may appear in any order. The data
lines have exactly the same format as the COLUMNS data lines, except that the column name is
replaced by the RHS name. Note that any unspecified elements are assumed to be zero.

RANGES Data Lines (optional)

Ranges are used for constraints of the form ! < Ax < u, where / and u are finite. The range of
the constraint is r = u—/l. Either / or u must be specified in the RHS section and r must be
defined in this section.

The data lines have exactly the same format as the COLUMNS data lines, except that the column
name is replaced by the RANGE name.

BOUNDS Data Lines (optional)

These lines specify limits on the values of the variables (/ and u in / < x < u). If the variable
is not specified in the bound set then it is automatically assumed to lie between default lower and
upper bounds (usually O and +o0). Like an RHS column which is given a name, the set of
variables in one bound set is also given a name.

Field 1: specifies the type of bound or defines the variable type.

LO lower bound

UP upper bound

FX fixed variable

FR free variable (—oo to +o0)

MI lower bound is —oo

PL upper bound is +eo. This is the default variable type.

Field 2: identifies a name for the bound set.
Field 3: identifies the column name of the variable belonging to this set.

Field 4: identifies the value of the bound; this has a numerical value only in association
with Lo, UP, FX in field 1, otherwise it is blank.

Field 5: is blank and ignored.
Field 6: is blank and ignored.

Note that if RANGES and BOUNDS sections are both present, the RANGES section must appear
first.

[NP2478/16) Page 3

H02BUF H — Operations Research

Page 4

Integer problems

In IP problems there are two common integer variable types: (a) O-1 integer variables which
represent ‘on’ or ‘off> situations and (b) general integer variables which are forced to take an
integer value, in a specified range, at the optimal integer solution. Integer variables can be
defined in the following compatible and standard MPSX forms.

In the compatible MPSX format, the type of integer variables are defined in field 1 of the
BOUNDS section, that is:
Field 1: specifies the type of the integer variable.
BV 0-1 integer variable (bound value is 1.0).
UI general integer variable (bound value is in field 4).

In the standard MPSX format, the integer variables are treated the same as the ‘ordinary’
bounded variables, in the BOUNDS section. Integer markers are, however, introduced in the
COLUMNS section to specify the integer variables. The indicator lines for these markers are:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 23 5-12 15-22 25-36 40-47 50-61
Contents INTEGER ‘MARKER’ ‘INTORG’
to mark the beginning of the integer variables and

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2-3 5-12 15-22 25-36 40-47 50-61
Contents INTEGER ‘MARKER’ ‘INTEND’

to mark the end. That is, any variables between these markers are treated as integer variables.
Note that if the (INTEND) indicator line is not specified in the file then all the variables between
the (INTORG) indicator line and the end of the COLUMNS section are assumed to be integer
variables. The routine accepts both standard and/or compatible MPSX format as a means of
specifying integer variables. An example of the standard MPSX format is given in Section 9.2 of
the document for HO2BFF.,

References

(1] MPSX - Mathematical Programming System.
Program number 5734 XM4, IBM Trade Corporation, New York, 1971.

Parameters

INFILE - INTEGER. Input
On entry: the unit number associated with the MPSX data file.
Constraint: 0 < INFILE < 99.

MAXN - INTEGER. Input
On entry: an upper limit for the number of variables in the problem.
Constraint: MAXN 2 1.

MAXM — INTEGER. Input
Onentry: an upper limit for the number of constraints (including the objective) in the
problem.

Constraint: MAXM 2 1.

OPTIM — CHARACTER*3,. Input

Onentry: specifies the direction of the optimization. OPTIM must be set to 'MIN' for
minimization and to 'MAX' for maximization.

Constraint: OPTIM = 'MIN' or 'MAX'.

[NP2478/16]

H-

10:

11:

12:

13:

14:

15:

Operations Research HO02BUF

XBLDEF - real. Input

On entry: the default lower bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or IP problem
XBLDEF would normally be set to zero.

XBUDEEF - real. Input

On entry: the default upper bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or IP problem
XBUDEF would normally be set to ‘infinity’ (i.e. XBUDEF 2 10%).

Constraint: XBUDEF 2 XBLDEF.

NMOBJ - CHARACTER*8. Input/ Output

On entry: either the name of the objective function to be used for the optimization, or blank
(in which case the first objective (free) row in the file is used).

On exit: the name of the objective row as defined in the MPSX data file.

NMRHS — CHARACTER*S. Input/ Output

On entry: either the name of the RHS set to be used for the optimization, or blank (in which
case the first RHS set is used).

On exit: the name of the RHS set read in the MPSX data file.

NMRNG — CHARACTER*8. Input! Output

On entry: either the name of the RANGE set to be used for the optimization, or blank (in
which case the first RANGE set (if any) is used).

On exit: the name of the RANGE set read in the MPSX data file. This is blank if the MPSX
data file does not have a RANGE set.

NMBND — CHARACTER*S. Input/ Output

On entry: either the name of the BOUNDS set to be used for the optimization, or blank (in
which case the first BOUNDS set (if any) is used).

On exit: the name of the BOUNDS set read in the MPSX data file. This is blank if the
MPSX data file does not have a BOUNDS set.

MPSLST — LOGICAL. Input

Onentry: if MPSLST = .TRUE., then a listing of the input data is sent to the current
advisory message unit (as defined by X04ABF). This can be useful for debugging the
MPSX data file.

N — INTEGER. Output
On exit: n, the actual number of variables in the problem.

M - INTEGER. Output
On exit: m, the actual number of general linear constraints in the problem.

A(MAXM,MAXN) - real array. Output
Onexit: A, the matrix of general linear constraints.

BL(MAXN+MAXM) - real array. Output

On exit: I, the lower bounds for all the variables and constraints in the following order. The
first N elements of BL contain the bounds on the variables and the next M elements contain
the bounds for the general linear constraints (if any). Note that an ‘infinite’ lower bound is
indicated by BL(j) = —1.0E+20 and an equality constraint by BL(j) = BU(j).

[NP2478/16] Page 5

HO2BUF H - Operations Research

16:

17:

18:

19:

20:

21:

22:

23:

BU(MAXN+MAXM) - real array. Output

On exit: u, the upper bounds for all the variables and constraints in the following order. The
first N elements of BU contain the bounds on the variables and the next M elements contain
the bounds for the general linear constraints (if any). Note that an ‘infinite’ upper bound is
indicated by BU(j) = 1.0E+20 and an equality constraint by BU(j) = BL(j).

CVEC(MAXN) - real array. Output

Onexit: c, the coefficients of the objective function. The signs of these coefficients are
determined by the problem (either LP or IP) and the direction of the optimization (see
OPTIM above).

X(MAXN) - real array. Output

On exit: an initial estimate of the solution to the problem. More precisely, X(j) = 1.0 if j is
odd and 0.0 otherwise, for j = 1,2,...N.

INTVAR(MAXN) — INTEGER array. Output

Onexit: indicates which are the integer variables in the problem. More precisely,
INTVAR (k) = 1 if x, is an integer variable, and 0 otherwise, for k = 1,2,....N.

CRNAME(MAXN+MAXM) — CHARACTER*8 array. Output

On exit: the MPSX names of all the variables and constraints in the problem in the following
order. The first N elements contain the MPSX names for the variables and the next M
elements contain the MPSX names for the general linear constraints (if any).

NMPROB — CHARACTER*8. Output
On exit: the name of the problem as defined in the MPSX data file.

IWORK (MAXN+MAXM) — INTEGER array. Workspace

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

There are too many rows present in the data file. Increase MAXM by at least (M —
MAXM) and rerun HO2BUF.

IFAIL = 2

There are too many columns present in the data file. Increase MAXN by at least (N —
MAXN) and rerun HO2BUF.

The following error exits (apart from IFAIL = 14) are caused by having either a corrupt or a
non-standard MPSX data file. Refer to Section 3 for a detailed description of the MPSX format
which can be read by HO2BUF. If MPSLST = .TRUE., the last line of printed output refers to the
line in the MPSX data file which contains the reported error.

Page 6 [NP2478/16)

H - Operations Research HO2BUF

IFAIL = 3
The objective function row was not found. There must be at least one row in the ROWS
section with row type N for the objective row.

IFAIL = 4
There are no rows specified in the ROWS section.

IFAIL = 5
An illegal constraint type was detected in the ROWS section. The constraint type must be
either N, L, G or E.

IFAIL = 6
An illegal row name was detected in the ROWS section. Names must be made up of
alphanumeric characters with no leading blanks.

IFAIL = 7
An illegal column name was detected in the COLUMNS section. Names must be made up
of alphanumeric characters with no leading blanks.

IFAIL = 8
An illegal bound type was detected in the BOUNDS section. The bound type must be either
LO, UP, FX, FR, MI, PL, BV or UL

IFAIL = 9
An unknown column name was detected in the BOUNDS section. All the column names
must be specified in the COLUMNS section.

IFAIL = 10
The last line in the file does not contain the ENDATA line indicator.

IFAIL = 11
An illegal data line was detected in the file. This line is neither a comment line nor a valid
data line.

IFAIL = 12
An unknown row name was detected in COLUMNS or RHS or RANGES section. All the

row names must be specified in the ROWS section.
IFAIL = 13
There were no columns specified in the COLUMNS section.

IFAIL = 14
An input parameter is invalid.

IFAIL = 15

Incorrect integer marker. In standard MPSX data format, integer variables should be defined
between INTORG and INTEND markers.

Accuracy
Not applicable.

Further Comments
None.

[NP2478/16] Page 7

HO02BUF

9.

9.1.

Page 8

Example

H - Operations Research

This example solves the same problem as the example for HO2BFF, except that it treats it as an

LP problem.

One of the applications of linear programming is to the so-called diet problem. Given the
nutritional content of a selection of foods, the cost of each food, the amount available of each
food and the consumer’s minimum daily energy requirements, the problem is to find the cheapest

combination. This gives rise to the following problem:
minimize

cTx
subject to
Ax 2 b,
0<x<u,
where
c=3 24 13 9 20 19)7, x = (X,,%,,%43,X4,%5,x) " is real,
110 205 160 160 420 260 2000
A=\ 4 32 13 8 4 14), b=/ 55| and
2 12 54285 22 80 800
u=(4 3 2 8 2 27

The rows of A correspond to energy, protein and calcium and the col

oatmeal, chicken, eggs, milk, pie and bacon respectively.
The MPSX representation of the problem is given in Section 9.2.

Program Text

umns of A correspond to

Note: the listing of the cxample program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this

manual, the results produced may not be identical for all implementations.

* HO2BUF Example Program Text
* Mark 16 Release. NAG Copyright 1993,
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MAXN, MAXM
PARAMETER (MAXN=50,MAXM=50)
INTEGER LDA
PARAMETER (LDA=MAXM)
real XBUDEF, XBLDEF
PARAMETER (XBUDEF=1.0e+20,XBLDEF=0.0¢O)
INTEGER LIWORK
PARAMETER (LIWORK=2*MAXN+3)
INTEGER LWORK
PARAMETER (LWORK=2*(MAXM+1)**2+7*MAXN+5*MAXM)
CHARACTER*3 OPTIM
PARAMETER (OPTIM='MIN')
* .. Local Scalars ..
real OBJVAL
INTEGER IFAIL, INFILE, ITER, M, N
LOGICAL MPSLST
CHARACTER*8 KBLANK, NMBND, NMOBJ, NMPROB, NMRHS, NMRNG
* .. Local Arrays
real A(MAXM,MAXN), AX(MAXM), BL(MAXN+MAXM),
+ BU(MAXN+MAXM), CLAMDA (MAXN+MAXM), CVEC(MAXN),
+ WORK (LWORK), X(MAXN)
INTEGER INTVAR(MAXN), ISTATE (MAXN+MAXM), IWORK(LIWORK)
CHARACTER*8 CRNAME (MAXN+MAXM)
* .. External Subroutines
EXTERNAL EO4MFF, EO4MHF, HO2BUF, HO2BVF
* .. Data statements ..
DATA KBLANK/' r/

[NP2478/16)

H — Operations Research HO2BUF

.. Executable Statements ..

WRITE (NOUT,*) ‘HO2BUF Example Program Results’
* Skip heading in data file

READ (NIN, *)

* Initialize parameters

INFILE = NIN
NMPROB = KBLANK
NMOBJ = KBLANK
NMRHS = KBLANK
NMRNG = KBLANK
NMBND = KBLANK
MPSLST = .FALSE.

IFAIL = 0
*
* Convert the MPSX data file for use by EQ4MFF
*
CALL HOZBUF(INFILE,MAXN,MAXM,OPTIM,XBLDEF,XBUDEF,NMOBJ,NMRHS,
+ NMRNG, NMBND , MPSLST, N, M, A, BL, BU, CVEC, X, INTVAR, CRNAME,
+ NMPROB, ISTATE, IFAIL)
*
* Solve the problem
*
IFAIL = -1

CALL EO4MHF(’Print Level = 5')

CALL EO4MFF (N,M,A,LDA,BL,BU,CVEC, ISTATE, X, ITER, OBJVAL, AX, CLAMDA,
+ IWORK, LIWORK, WORK, LWORK, IFAIL)

IF (IFAIL.EQ.0 .OR. IFAIL.EQ.1 .OR. IFAIL.EQ.3) THEN
* Print solution (using MPSX names)
IFAIL = 0
CALL HO2BVF(N,M,A,LDA,BL,BU,X,CLAMDA, ISTATE, CRNAME, IFAIL)

ELSE
WRITE (NOUT,99999) ’'EO4MFF terminated with IFAIL = ’, IFAIL
END IF
*

STOP
*

99999 FORMAT (1X,A,I3)
END

9.2. Program Data

Note: the MPSX data which is read by HO2BUF begins with the second record of this data file;
the first record is a caption which is read by the example program.

HO2BUF Example Program Data

NAME DIET
ROWS
G ENERGY
G PROTEIN
G CALCIUM
N COST
COLUMNS
OATMEAL ENERGY 110.0
OATMEAL PROTEIN 4.0
OATMEAL CALCIUM 2.0
OATMEAL CosT 3.0
CHICKEN ENERGY 205.0
CHICKEN PROTEIN 32.0
CHICKEN CALCIUM 12.0
CHICKEN COST 24.0

[NP2478/16] Page 9

HO2BUF H — Operations Research

EGGS ENERGY 160.0
EGGS PROTEIN 13.0
EGGS CALCIUM 54.0
EGGS COosT 13.0
MILK ENERGY 160.0
MILK PROTEIN 8.0
MILK CALCIUM 285.0
MILK cosT 9.0
PIE ENERGY 420.0
PIE PROTEIN 4.0
PIE CALCIUM 22.0
PIE COST 20.0
BACON ENERGY 260.0
BACON PROTEIN 14.0
BACON CALCIUM 80.0
BACON cosT 19.0
RHS
DEMANDS ENERGY 2000.0
DEMANDS PROTEIN 55.0
DEMANDS CALCIUM 800.0
BOUNDS

UI SERVINGS OATMEAL 4.0
UI SERVINGS CHICKEN 3.0
UP SERVINGS EGGS 2.0
UP SERVINGS MILK 8.0
UP SERVINGS PIE 2.0
UI SERVINGS BACON 2.0
ENDATA

9.3. Program Results
HO2BUF Example Program Results

Calls to EO4MHF

Print Level = 5

***x EQO4MFF
**% Start of NAG Library implementation details *#x

Implementation title: Generalised Base Version
Precision: FORTRAN double precision
Product Code: FLBAS16A
Mark: 16A

*** End of NAG Library implementation details **x

Parameters

Problem type........... LpP

Linear constraints..... 3 Feasibility tolerance.. 1.05E-08
Variables............. . 6 Crash tolerance...... .. 1.00E-02
Infinite bound size.... 1.00E+20 COLD start............ .

Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16
Check frequency........ 50 Expand frequency....... 10000
Print level............ 5 Iteration limit...... .e 50
Monitoring file........ -1

Workspace provided is IWORK(103), WORK(5802).

To solve problem we need IWORK(15), WORK(89).

Page 10 [NP2478/16)

H — Operations Research

Itn Step Ninf Sinf/Objective Norm Gz
0 O0.0E+00 3 1.799000E+03 0.0E+00
1 1.5E-02 1 2.550000E+02 0.0E+00
2 1.4E-03 0 1.271429E+02 0.0E+00
3 8.7E-02 0 1.129048E+02 0.0E+00
4 2.1E-01 0 1.062857E+02 0.0E+00
5 1.9E+00 0 9.733333E+01 0.0E+00
6 2.9E+00 0 9.250000E+01 0.0E+00
Exit EO4MFF - Optimal LP solution.
Final LP objective value = 92.50000

Exit from LP problem after

Varbl State Value
OATMEAL UL 4.00000
CHICKEN LL 0.000000
EGGS LL 0.000000
MILK FR 4.50000
PIE UL 2.00000
BACON LL 0.000000
L Con State Value
ENERGY LL 2000.00
PROTEIN FR 60.0000
CALCIUM FR 1334.50

6 iterations.

Lower Bound Upper Bound

0.000000 4.00000
0.000000 3.00000
0.000000 2.00000
0.000000 8.00000
0.000000 2.00000
0.000000 2.00000

Lower Bound Upper Bound

2000.00 None
55.0000 None
800.000 None

Lagr Mult

-3.188
12.47
4.000

0.0000

-3.625
4.375

Lagr Mult

5.6250E~-02

0.0000
0.0000

HO02BUF

Residual

0.0000
0.0000
0.0000

3.500
0.0000
0.0000

Residual
0.0000

5.000
534.5

[NP2478/16]

Page 11 (last)

H — Operations Research HO02BVF

HO2BVF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

HO2BVF prints the solution to a linear or integer programming problem computed by EO4MFF
or HO2BBF and HO2BZF, with user supplied names for the rows and columns.

Specification

SUBROUTINE HO2BVF (N, M, A, LDA, BL, BU, X, CLAMDA, ISTATE, CRNAME,
1 IFAIL)

INTEGER N, M, LDA, ISTATE(N+M), IFAIL
real A(LDA,N), BL(N+M), BU(N+M), X(N), CLAMDA(N+M)
CHARACTER*8 CRNAME (N+M)

Description

HO2BVF prints the solution to a linear or integer programming problem with user supplied
names for the rows and columns. All output is written to the current advisory message unit (as
defined by X04ABF). The routine must be preceded in the same program by calls to HO2BUF
and either EO4MFF (if an LP problem has been solved) or HO2BBF and HO2BZF (if an IP
problem has been solved). The documents for HO2BUF, EO4MFF and/or HO2BBF and HO2BZF
should be consulted for further details.

References

[1] MPSX — Mathematical Programming System.
Program number 5734 XM4, IBM Trade Corporation, New York, 1971.

Parameters

N — INTEGER. Input
On entry: the number of variables, as returned by HO2BUF.
Constraint: N > 0.

M - INTEGER. Input
On entry: the number of general linear constraints, as returned by HO2BUF.
Constraint: M 2 0.

A(LDA,*) — real array. Input

Note: the second dimension of the array A must be at least at least N when M > 0, and at
least 1 when M = 0.

On entry: the matrix of general linear constraints, as returned by HO2BUF.

LDA - INTEGER. Input
On entry: this must be the same parameter MAXM as supplied to HO2BUF.
Constraint: LDA 2 max(1,M).

BL(N+M) - real array. Input
On entry: the lower bounds for all the constraints, as returned by EO4MFF or HO2BZF.

BU(N+M) - real array. Input
On entry: the upper bounds for all the constraints, as returned by EO4MFF or HO2BZF.

[NP2478/16) Page 1

HO02BVF H — Operations Research

7:

10:

11:

X(N) — real array. Input
On entry: the solution to the problem, as returned by EO4MFF or HO2BBF.

CLAMDA (N+M) - real array. Input

Onentry: the Lagrange multipliers (reduced costs) for each constraint with respect to the
working set, as returned by EO4MFF or HO2BZF.

ISTATE(N+M) — INTEGER array. Input

On entry: the status of every constraint in the working set at the solution, as returned by
EO04MFF or HO2BZF.

CRNAME(N+M) — CHARACTER*$ array. Input

Onentry: the user defined names for all the variables and constraints, as returned by
HO2BUF.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, N < 0,
or M < 0, _
or LDA < max(1,M).
Accuracy
Not applicable.
Further Comments
None.
Example

See the example for HO2BUF.

Page 2 (last) [NP2478/16]

H - Operations Research H02BZF

HO2BZF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Warning: the specification of the parameter LIWORK changed at Mark 16: the minimum dimension
of the array IWORK has been increased by N + 3.

1.

Purpose

HO2BZF extracts more information associated with the solution of an integer programming
problem computed by HO2BBF.

Specification
SUBROUTINE HO2BZF (N, M, BL, BU, CLAMDA, ISTATE, IWORK, LIWORK, RWORK,
1 LRWORK, IFAIL)
INTEGER N, M, ISTATE(N+M), IWORK(LIWORK), LIWORK, LRWORK, IFAIL
real BL(N+M), BU(N+M), CLAMDA (N+M), RWORK (LRWORK)
Description

HO2BZF extracts the following information associated with the solution of an integer
programming problem computed by HO2BBF: the upper and lower bounds used for the solution,
the Lagrange multipliers (costs), and the status of the variables at the solution.

In the branch and bound method employed by HO2BBF, the arrays BL and BU are used to
impose restrictions on the values of the integer variables in each sub-problem. That is, if the
variable x; is restricted to take value v, in a particular sub-problem, then BL(j) = BU) = v,
is set in the sub-problem. Thus, on exit from this routine, some of the elements of BL and BU
which correspond to integer variables may contain these imposed values, rather than those
originally supplied to HO2BBF.

References
None.

Parameters

N - INTEGER. Input
On entry: this must be the same parameter N as supplied to HO2BBF.
Constraint: N > 0.

M - INTEGER. Input
On entry: this must be the same parameter M as supplied to HO2BBF.
Constraint: M 2 0.

BL(N+M) - real array. Output
On exit: if HO2BBF exits with IFAIL = 0, 7 or 9, the values in the array BL contain the
lower bounds imposed on the integer solution for all the constraints. The first N elements
contain the lower bounds on the variables, and the next M elements contain the lower
bounds for the general linear constraints (if any).

BU(N+M) - real array. Output
On exit: if HO2BBF exits with IFAIL = 0, 7 or 9, the values in the array BU contain the
upper bounds imposed on the integer solution for all the constraints. The first N elements
contain the upper bounds on the variables, and the next M elements contain the upper
bounds for the general linear constraints (if any).

[NP2834/17) Page 1

HO02BZF ' H - Operations Research

5: CLAMDA (N+M) - real array. Output

On exit: if HO2BBF exits with IFAIL = 0, 7 or 9, the values in the array CLAMDA contain
the values of the Lagrange multipliers for each constraint with respect to the current
working set. The first N elements contain the multipliers (reduced costs) for the bound
constraints on the variables, and the next M elements contain the multipliers (shadow costs)
for the general linear constraints (if any).

6: ISTATE(N+M) — INTEGER array. Output

On exit: if HO2BBF exits with IFAIL = 0, 7 or 9, the values in the array ISTATE indicate
the status of the constraints in the working set at an integer solution. Otherwise, ISTATE
indicates the composition of the working set at the final iterate. The significance of each
possible value of ISTATE(j) is as follows:

ISTATE()) Meaning
-2 The constraint violates its lower bound by more than TOLFES (the
feasibility tolerance, see HO2BBF).

-1 The constraint violates its upper bound by more than TOLFES.
0 The constraint is satisfied to within TOLFES, but is not in the working set.
1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of

ISTATE can occur only when BL(j) = BU()).

4 This corresponds to an integer solution being declared with x; being
temporarily fixed at its current value. This value of ISTATE can occur only
when IFAIL = 0, 7 or 9 on exit from HO2BBF.

7 IWORK(LIWORK) - INTEGER array. Workspace

This must be the same parameter IWORK as supplied to HO2BBF. It is used to pass
information from HO2BBF to HO2BZF and therefore the contents of this array must not be
changed before calling HO2BZF.

8 LIWORK - INTEGER. Input

On entrv: the dimension of the array IWNORK as declared in the (sub)program from which
HO2BZF is called.

9: RWORK(LRWORK) - real array. Workspace

This must be the same parameter RWORK as supplied to HO2BBEF. It is used to pass
information from HO2BBF to HO2BZF and therefore the contents of this array must not be
changed before calling HO2BZF.

10 LRWORK - INTEGER. Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
HO2BZF is called.

11: IFAIL — INTEGER. Input! Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter P01) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

Page 2 (NP2834117]

H — Operations Research HO02BZF

IFAIL = 1
On entry, N < 0,
or M < 0.

7. Accuracy
Not applicable.

8. Further Comments
None.

9. Example

One of the applications of integer programming is to the so-called diet problem. Given the
nutritional content of a selection of foods, the cost of each food, the amount available of each
food and the consumer’s minimum daily energy requirements, the problem is to find the cheapest
combination. This gives rise to the following problem:

minimize
cTx
subject to
Ax 2 b,
0<x<u,
where
c=(3 24 13 9 20 19)7, x = (x;,%,,X3,%4,%s5,%¢) " is integer,
110 205 160 160 420 260 2000
A= 4 32 13 8 4 14}, b= 55] and
2 12 54 285 22 80 800

u=@4 3 2 8 2 2.

The rows of A correspond to energy, protein and calcium and the columns of A correspond to
oatmeal, chicken, eggs, milk, pie and bacon respectively.

The following program solves the above problem to obtain the optimal integer solution and then
examines the effect of increasing the energy required to 2200 units.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* HO2BZF Example Program Text
* Mark 16 Revised. NAG Copyright 1993.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX
PARAMETER (NMAX=10,MMAX=10)
INTEGER LDA
PARAMETER (LDA=MMAX)
INTEGER LIWORK, LRWORK
PARAMETER (LIWORK=1000, LRWORK=1000)
* .. Local Scalars ..
real BIGBND, INIVAL, OBJMIP, TOLFES, TOLIV
INTEGER I, IFAIL, INTFST, ITMAX, J, M, MAXDPT, MAXNOD,
+ MSGLVL, N
* .. Local Arrays
real A(LDA,NMAX), BL(NMAX+MMAX), BU(NMAX+MMAX),
+ CLAMDA (NMAX+MMAX), CVEC(NMAX), RWORK(LRWORK),
+ X (NMAX)
INTEGER INTVAR(NMAX), ISTATE(NMAX+MMAX), IWORK(LIWORK)
CHARACTER*8 NAMES (NMAX+MMAX)

[NP2478/16] Page 3

HO02BZF H — Operations Research

.. External Subroutines ..

EXTERNAL HO2BBF, HO02BZF, OUTSOL
* .. Executable Statements ..

WRITE (NOUT,*) ’"HO2BZF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN

Read ITMAX, MSGLVL, MAXNOD, INTFST, MAXDPT, TOLFES, TOLIV,
CVEC, A, BIGBND, BL, BU, INTVAR and X from data file

* ¥ % *

READ (NIN,*) ITMAX, MSGLVL

READ (NIN,*) MAXNOD

READ (NIN,*) INTFST, MAXDPT

READ (NIN,*) TOLFES, TOLIV

READ (NIN,*) (CVEC(J),J=1,N)

READ (NIN,*) (NAMES(J),(A(I,J),I=1,M),J=1,N)
READ (NIN,*) BIGBND

READ (NIN,*) (BL(I),I=1,N)

READ (NIN,*) (NAMES(N+I),BL(N+I),I=1,M)
READ (NIN,*) (BU(I),I=1,N+M)

READ (NIN,*) (INTVAR(I),I=1,N)

READ (NIN,*) (X(I),I=1,N)

*

Solve the IP problem using HO2BBF

IFAIL = -1

CALL HO2BBF (ITMAX,MSGLVL,N,M, A, LDA, BL, BU, INTVAR, CVEC, MAXNOD,
+ INTFST,MAXDPT, TOLIV, TOLFES, BIGBND, X, OBJMIP, IWORK,
+ LIWORK, RWORK, LRWORK, IFAIL)

IF (IFAIL.EQ.0 .OR. IFAIL.EQ.7 .OR. IFAIL.EQ.9) THEN
WRITE (NOUT,99999) ’'IP objective value = ’, OBJMIP

* Get information about the solution
IFAIL = 0

CALL HO2BZF(N,M,BL,BU, CLAMDA, ISTATE, INORK, LIWORK, RWORK,
+ LRWORK, IFATIL)

*

Print the solution

*

CALL OUTSOL(N,M,A,LDA, BL, BU, X, ISTATE, CLAMDA, BIGBND, NAMES,
+ NOUT)

Increase the energy requirements and solve the modified IP
problem using the current IP solution as the starting point

* % * F

INIVAL = BL(N+1)

READ (NIN,*) BL(N+1)

WRITE (NOUT, 99998) ’‘Increase the energy requirements from’,
+ INIVAL, 'to’, BL(N+1)

IFAIL = -1

CALL HO2BBF (ITMAX,MSGLVL,N,M, A, LDA, BL, BU, INTVAR, CVEC, MAXNOD,
+ INTFST,MAXDPT,TOLIV,TOLFES,BIGBND,X,OBJMIP,
+ IWORK, LIWORK, RWORK, LRWORK, IFAIL)

IF (IFAIL.EQ.0 .OR. IFAIL.EQ.7 .OR. IFAIL.EQ.9) THEN
WRITE (NOUT,99999) 'IP objective value = ’, OBJMIP

* Get information about the solution

IFAIL = 0

Page 4 [NP2478/16]

H — Operations Research HO02BZF

CALL HO2BZF(N,M, BL, BU, CLAMDA, ISTATE, IWORK, LIWORK, RWORK,
+ LRWORK, IFAIL)

*

Print the solution

CALL OUTSOL(N,M, A, LDA, BL, BU, X, ISTATE, CLAMDA, BIGBND, NAMES,

+ NOUT)
*
ELSE
WRITE (NOUT,99997) ’ HO2BBF terminated with IFAIL = ',
+ IFAIL
END IF
ELSE
WRITE (NOUT,99997) ’ HO2BBF terminated with IFAIL = ’, IFAIL
END IF
END IF
STOP

*

99999 FORMAT (//1X,A,1P,G16.4)

99998 FORMAT (//1X,A,2X,1P,G10.4,2X,A,2X,1P,G10.4)
99997 FORMAT (1X,A,I3)

END
SUBROUTINE OUTSOL(N,M,A,LDA,BL,BU,X,ISTATE,CLAMDA,BIGBND,NAMES,
+ NOUT)
* .. Scalar Arguments ..
real BIGBND
INTEGER LDA, M, N, NOUT
* .. Array Arguments ..
real A(LDA, *), BL(N+M), BU(N+M), CLAMDA (N+M), X(N)
INTEGER ISTATE (N+M)
CHARACTER*8 NAMES (N+M)
* .. Local Scalars ..
real Bl, B2, RES, RES2, V, WLAM
INTEGER Is, J, K
CHARACTER*80 REC
* .. Local Arrays ..
CHARACTER*2 LSTATE(-2:4)
* .. External Functions
real sdot
EXTERNAL sdot
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Data statements ..
DATA LSTATE(-2)/'——'/, LSTATE(-1)/'++'/,
+ LSTATE(O)/’FR’/, LSTATE(1)/’LL’/,
+ LSTATE(2)/'UL'/, LSTATE(3)/'EQ’/,
+ LSTATE(4)/’'TF'/
* .. Executable Statements ..

WRITE (NOUT, 99999)
DO 20 J =1, N + M
Bl = BL(J)
B2 = BU(J)
WLAM = CLAMDA(J)
IS = ISTATE(J)
IF (J.LE.N) THEN

* The variables x.
K=Jd
vV = X(J)
ELSE
* The linear constraints Ax*x,.
IF (J.EQ.N+1) WRITE (NOUT,b99998)
K=J - N
V = sdot(N,A(K,1),LDA,X,1)

END IF

*

Print a line for the j-th variable or constraint.

RES = V - Bl
RES2 = B2 - V

[NP2478116) Page 5

HO02BZF

H — Operations Research

IF (ABS(RES).GT.ABS(RES2)) RES = RES2

WRITE (REC,99997) NAMES(J), LSTATE(IS), V, B1, 32 WLAM, RES
IF (B1.LE.-BIGBND) REC(29:42) = ’ None

IF (B2.GE.BIGBND) REC(43:56) = ’ None ’

WRITE (NOUT,’(A)’) REC

20 CONTINUE
RETURN

*

99999 FORMAT (//1X,’Varbl’, 3X,’State’,5X, 'Value',sx ’Lower Bound’, 3X,

+

' Upper Bound’, 4X, ’Lagr Mult’,3X,’Residual’,/)

99998 FORMAT (//1X,’L Con’,3X ’State’,5X,’Value’, 5X, Lower Bound’, 3X,

+

"Upper Bound’, 4X,’Lagr Mult’,3X,’Residual’,/)

99997 FORMAT (1X,A8,2X,A2,1X,1P,3G14.4,1P,G12.4,1P,G12.4)
END

9.2. Program Data
HO2BZF Example Program Data

6 3 :Values of N and M

0 o0 :Values of ITMAX and MSGLVL
0 :Value of MAXNOD

0 9 :Values of INTFST and MAXDPT
0.0 0.0 :Values of TOLFES and TOLIV
3.0 24.0 13.0 9.0 20.0 19.0 :End of CVEC

'Oatmeal’ 110.0 4.0 2.0

’Chicken’ 205.0 32.0 12.0

"Eggs’ 160.0 13.0 54.0

'Milk’ 160.0 8.0 285.0

'Pie’ 420.0 4.0 22.0

’Bacon’ 260.0 14.0 80.0 :End of matrix A
1.0E+20 :Value of BIGBND
0.0 0.0 0.0 0.0 0.0 0.0

"Energy’ 2000.0 ’Protein’ 55.0 ‘Calcium’ 800.0 :End of BL

4.0 3.0 2.0 8.0 2.0 2.0 1.0E+20 1.0E+20 1.0E+20 :End of BU

1 1 1 1 1 1 :End of INTVAR

0.0 0.0 0.0 0.0 0.0 0.0 :End of X

2200.0

:Change ’'Energy’ in RHS

9.3. Program Results
HO2BZF Example Program Results

Page 6

IP objective value = 97.00

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
Oatmeal EQ 4.000 4.000 4.000 3.000 0.0000
Chicken LL 0.0000 0.0000 3.000 24.00 0.0000
Eggs LL 0.0000 0.0000 2.000 13.00 0.0000
Milk LL 5.000 5.000 8.000 9.000 0.0000
Pie EQ 2.000 2.000 2.000 20.00 0.0000
Bacon LL 0.0000 0.0000 2.000 19.00 0.0000

L Con State Value Lower Bound Upper Bound Lagr Mult Residual
Energy FR 2080. 2000. None 0.0000 80.00
Protein FR 64.00 55.00 None 0.0000 9.000
Calcium FR 1477. 800.0 None 0.0000 677.0
Increase the energy requirements from 2000. to 2200.

IP objective value = 106.0

[NP2478116]

H — Operations Research

HO02BZF

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
Oatmeal EQ 4.000 4.000 4.000 3.000 0.0000
Chicken LL 0.0000 0.0000 3.000 24.00 0.0000
Eggs LL 0.0000 0.0000 2.000 13.00 0.0000
Milk LL 6.000 6.000 8.000 9.000 0.0000
Pie EQ 2.000 2.000 2.000 20.00 0.0000
Bacon LL 0.0000 0.0000 2.000 19.00 0.0000
L Con State Value Lower Bound Upper Bound Lagr Mult Residual
Energy FR 2240. 2200 None 0.0000 40.00
Protein FR 72.00 55.00 None 0.0000 17.00
Calcium FR 1762. 800.0 None 0.0000 962.0
[NP2478116) Page 7 (last)

H — Operations Research HO3ABF

HO3ABF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
HO3ABEF solves the classical Transportation (‘Hitchcock’) problem.
Specification
SUBROUTINE HO3ABF (KOST, MMM, MA, MB, M, K15, MAXIT, K7, K9, NUMIT,
1 K6, K8, K11, K12, z, IFAIL)
INTEGER KOST(MMM,MB), MMM, MA, MB, M, K15(M), MAXIT,
1 K7(M), K9(M), NUMIT, K6(M), K8(M), K11(M), K12(M),
2 IFAIL
real pA
Description
HO3ABEF solves the Transportation problem by minimizing
z = ZZC"!'x"J"
i
subject to the constraints
Xx; = A (Availabilities)
J

Yx; =B, (Requirements)

where the x; can be interpreted as quantities of goods sent from source i to destination J, for
i=12..m;j=12,..,m,, atacost of c; per unit, and it is assumed that ¥ A, = Y.B; and
i j

1

x; 20
HO3ABF uses the ‘stepping stone’ method, modified to accept degenerate cases.
References
[1] HADLEY, G.
Linear Programming.
Addison-Wesley, New York, 1962.
Parameters
KOST(MMM,MB) — INTEGER array. Input

On entry: the coefficients c;, for i = 1,2,..,m,;j = 1,2,...,m,.

MMM - INTEGER. Input

Onentry: the first dimension of the array KOST as declared in the (sub)program from
which HO3ABF is called.

Constraint: MMM 2 MA.

MA - INTEGER. Input
On entry. the number of sources, m,.
Constraint: MA 2 1.

MB — INTEGER. Input
On entry: the number of destinations, m,.
Constraint: MB 2 1.

[NP1692/14] Page 1

HO3ABF H — Operations Research

10:

11:

12:

13:

14:

15:

16:

M - INTEGER. Input
On entry: the value of m, + m,.

K15(M) — INTEGER array. Input/ OQutput

Onentry: K15(i) must be set to the availabilities A;, for i = 1,2,..,m,; and K15(m,+j)
must be set to the requirements B, for j = 1,2,...,m,.

On exit: the contents of K15 are undefined.

MAXIT - INTEGER. Input
On entry: the maximum number of iterations allowed.
Constraint: MAXIT 2 1.

K7(M) — INTEGER array. Workspace
K9(M) — INTEGER array. Workspace
NUMIT - INTEGER. Output

On exit: the number of iterations performed.

K6(M) — INTEGER array. Output

Onexit: K6(k), for k = 1,2,..,m_+m,—1, contains the source indices of the optimal
solution (see K11 below).

K8(M) — INTEGER array. Output

On exit: K8(k), for k = 1,2,..,m,+m,—1, contains the destination indices of the optimal
solution (see K11 below).

K11(M) — INTEGER array. Output

Onexit: K11(k), for k = 1,2,...,m,+m,—1, contains the optimal quantities x;; which, sent
from source i = K6(k) to destination j = K8(k), minimize z.

K12(M) — INTEGER array. Output

On exit: K12(k), for k = 1,2,...,m,+m,—1, contains the unit cost c,; associated with the
route from source i = K6(k) to destination j = K8(k).

Z - real. Qutput
On exit: the value of the minimized total cost.

IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1
On entry the sum of the availabilities does not equal the sum of the requirements.

IFAIL = 2
During computation MAXIT has been exceeded.

Page 2 [NP1692/14]

H — Operations Research HO3ABF

IFAIL = 3
On entry, MAXIT < 1.
IFAIL = 4
On entry, MA < 1,
or MB < 1,
or M # MA + MB,
or MA > MMM.

7. Accuracy
All operations are performed in integer arithmetic so that there are no rounding errors.

8. Further Comments
An accurate estimate of the run time for a particular problem is difficult to achieve.

9. Example

A company has three warehouses and three stores. The warehouses have a surplus of 12 units of
a given commodity divided among them as follows:

Warehouse Surplus
1 1
2 5
3 6
The stores altogether need 12 units of commodity, with the following requirements:
Store Requirement
1 4
2 4
3 4

Costs of shipping one unit of the commodity from warehouse i to store J are displayed in the
following matrix:

Store
1 2 3
1 |8 8 11
Warehouse 2 |5 8 14
3 14 3 10

It is required to find the units of commodity to be moved from the warehouses to the stores, such
that the transportation costs are minimized. The maximum number of iterations allowed is 200.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* HO3ABF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER MAMAX, MBMAX, M, MMM
PARAMETER (MAMAX=5, MBMAX=5 , M=MAMAX+MBMAX , MMM=MAMAX)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars
real Z
INTEGER I, IFAIL, J, L, MA, MB

[NP1692/14) Page 3

HO3ABF

2

*

H — Operations Research
Local Arrays ..
INTEGER K11(M), K12(M), K15(M), K6(M), K7(M), K8(M),
+ K9(M), KOST(MMM,MBMAX)
External Subroutines
EXTERNAL HO3ABF
.. Executable Statements ..
WRITE (NOUT,*) ’HO3ABF Example Program Results’
Skip heading in data file
READ (NIN, *)
READ (NIN,*) MA, MB
IF (MA.GT.0 .AND. MA.LE.MAMAX .AND. MB.GT.0 .AND. MB.LE.MBMAX)
+ THEN
READ (NIN,*) (K15(I),I=1,MA+MB)
DO 20 I =1, MA
READ (NIN,*) (KOST(I,J),J=1,MB)
0 CONTINUE
IFAIL = 0
CALL H03ABF(KOST,MMM,MA,MB,MA+MB,K15,200,K7,K9,L,K6,K8,K11,K12,
+ %,IFAIL)
WRITE (NOUT, %)
WRITE (NOUT,99999) ’'Total cost ="', Z
WRITE (NOUT, *)
WRITE (NOUT,*) ’'Goods from to’
WRITE (NOUT, *)
WRITE (NOUT,99998) (Kll(I),K6(I),K8(I),I=1,MA+MB—1)
END IF
STOP

99999 FORMAT (1X,A,F5.1)
99998 FORMAT (1X,I3,16,I5)

END

9.2. Program Data
HO3ABF Example Program Data

o0 e R V)

3
5
8 1
8 1
3 1

9.3. Program Results
HO3ABF Example Program Results

Total cost =

Goods from to

&P RPN

NP NDWW

P WwWwWwwiN

4 4 4

77.0

Page 4 (last)

[NP1692/14]

H - Operations Research HO3ADF

HO3ADF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

HO3ADF finds the shortest path through a directed or undirected acyclic network using Dijkstra’s
algorithm.

2 Specification

SUBROUTINE HO3ADF(N, NS, NE, DIRECT, NNZ, D, IROW, ICOL, SPLEN,

1 PATH, IWORK, WORK, IFAIL)

INTEGER N, NS, NE, NNZ, IROW(NNZ), ICOL(NNZ),
1 PATH(N), IWORK(3xN+1), IFAIL

real D(NNZ), SPLEN, WORK(2xN)

LOGICAL DIRECT

3 Description

This routine attempts to find the shortest path through a directed or undirected acyclic network, which
consists of a set of points called vertices and a set of curves called ares that connect certain pairs of
distinct vertices. An acyclic network is one in which there are no paths connecting a vertex to itself. An
arc whose origin vertex is ¢ and whose destination vertex is j can be written as i — j. In an undirected
network the arcs ¢ — j and j — ¢ are equivalent (i.e., i & j), whereas in a directed network they are
different. Note that the shortest path may not be unique and in some cases may not even exist (e.g. if
the network is disconnected).

The network is assumed to consist of n vertices which are labelled by the integers 1,2, ..., n. The lengths
of the arcs between the vertices are defined by the n by n distance matrix D, in which the element d;;
gives the length of the arc i — j; d;; = 0 if there is no arc connecting vertices ¢ and j (as is the case for
an acyclic network when ¢ = j). Thus the matrix D is usually sparse. For example, if n = 4 and the
network is directed, then

0 dyy dyz dyy

dy 0 dys dy,

d3; d3; 0 dy

dyy dyy dgg 0

D=

If the network is undirected, D is symmetric since d;; = d;; (i.e., the length of the arc i — j = the length
of the arc j — 1).

The method used by HO3ADF is described in detail in Section 8.

4 References

[1] Dijkstra E W (1959) A note on two problems in connection with graphs Numer. Math. 1 269-271

5 Parameters

1: N — INTEGER Input
On entry: n, the number of vertices.

Constraint: N > 2.

[NP3086/18] HO3ADF.1

HO03ADF H - Operations Research

10:

NS — INTEGER Input
NE — INTEGER Input
On entry: n, and n,, the labels of the first and last vertices, respectively, between which the shortest
path is sought.
Constraints:

1 < NS <N,

1 < NE <N,

NS # NE.

DIRECT — LOGICAL Input

On entry: indicates whether the network is directed or undirected as follows:

if DIRECT = .TRUE., the network is directed;
if DIRECT = .FALSE., the network is undirected.

NNZ — INTEGER Input
On entry: the number of non-zero elements in the distance matrix D.

Constraints:

if DIRECT = .TRUE., 1 < NNZ < N x (N-1);
if DIRECT = .FALSE., 1 < NNZ < N x (N-—1)/2.

D(NNZ) — real array Input

On entry: the non-zero elements of the distance matrix D, ordered by increasing row index and
increasing column index within each row. More precisely, D(k) must contain the value of the non-
zero element with indices (IROW(k),ICOL(k)); this is the length of the arc from the vertex with
label IROW(k) to the vertex with label ICOL(k). Elements with the same row and column indices
are not allowed. If DIRECT = .FALSE., then only those non-zero elements in the strict upper
triangle of D need be supplied since d;; = d;;. (F11ZAF may be used to sort the elements of an
arbitrarily ordered matrix into the required form. This is illustrated in Section 9)

Constraint: D(k) > 0.0, for k =1,2,...,NNZ.

IROW(NNZ) — INTEGER array Input
ICOL(NNZ) — INTEGER array Input

On entry: IROW(k) and ICOL(k) must contain the row and column indices, respectively, for the

non-zero element stored in D(k).

Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZAF):

IROW(k — 1) < IROW(k), or

IROW(k — 1) = IROW(k) and ICOL(k — 1) < ICOL(k), for k = 2,3, .. .,NNZ.

In addition, if DIRECT = .TRUE., 1 < IROW(k) < N, 1 < ICOL(k) < N and IROW(k) #
ICOL(k);

if DIRECT = .FALSE., 1 < IROW(k) < ICOL(k) < N.

SPLEN — real Output
On ezit: the length of the shortest path between the specified vertices n, and n,.

PATH(N) — INTEGER array Output

On eril: contains details of the shortest path between the ‘specified vertices n, and n,. More
precisely, NS = PATH(1) — PATH(2) — ... — PATH(p) = NE for some p < n. The remaining
(n — p) elements are set to zero.

HO3ADF.2 [NP3086/18]

H - Operations Research

HO3ADF

11: IWORK(3*N+1) — INTEGER array Workspace
12: WORK(2+N) — real array Workspace
13: IFAIL — INTEGER Input/Outpul

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry,
or
or
or
or

or
IFAIL = 2
On entry,

or

or
IFAIL = 3
On entry,

IFAIL = 4
On entry,

IFAIL =5

On entry,
IFAIL = 6

On entry,

IFAIL = 7
On entry,
IFAIL = 8

N <2,

NS < 1,
NS > N,
NE < 1,
NE > N,
NS = NE.

NNZ > N x (N—1) when DIRECT = .TRUE,,
NNZ > N x (N—1)/2 when DIRECT = .FALSE.,
NNZ < 1.

IROW(k) < 1 or IROW(k) > N or ICOL(k) < 1 or ICOL(k) > N or IROW(k) =
ICOL(k) for some k when DIRECT = .TRUE..

IROW(k) < 1 or IROW(k) > ICOL(k) or ICOL(k) > N for some k when DIRECT =
.FALSE..

D(k) < 0.0 for some k.

IROW(k — 1) > IROW(k) or IROW(k —1) = IROW(k) and ICOL(k — 1) > ICOL(k)
for some k.

IROW(k — 1) = IROW(k) and ICOL(k — 1) = ICOL(k) for some k.

No connected network exists between vertices NS and NE.

7 Accuracy

The results are exact, except for the obvious rounding errors in summing the distances in the length of

the shortest path.

[NP3086/18]

HO3ADF.3

HO3ADF H - Operations Research

8 Further Comments

This routine is based upon Dijkstra’s algorithm (see [1]), which attempts to find a path n, — n, between
two specified vertices n, and n, of shortest length d(n,,n,).

The algorithm proceeds by assigning labels to each vertex, which may be temporary or permanent.
A temporary label can be changed, whereas a permanent one cannot. For example, if vertex p has a
permanent label (g,7), then r is the distance d(n,,r) and g is the previous vertex on a shortest length
n, — p path. If the label is temporary, then it has the same meaning but it refers only to the shortest
n, — p path found so far. A shorter one may be found later, in which case the label may become

permanent.

The algorithm consists of the following steps.

(1) Assign the permanent label (—,0) to vertex n, and temporary labels (—, 00) to every other vertex.
Set k = n, and go to (2).

(2) Consider each vertex y adjacent to vertex k with a temporary label in turn. Let the label at k be
(p,q) and at y(r,s). If ¢+ dy, <s, then a new temporary label (k, g + d,) 1s assigned to vertex y;
otherwise no change is made in the label of y. When all vertices y with temporary labels adjacent
to k have been considered, go to (3).

(3) From the set of temporary labels, select the one with the smallest second component and declare
that label to be permanent. The vertex it is attached to becomes the new vertex k. If k = n, go to
(4). Otherwise go to (2) unless no new vertex can be found (e.g. when the set of temporary labels
is ‘empty’ but k # n,, in which case no connected network exists between vertices n, and n,).

(4) To find the shortest path, let (y, z) denote the label of vertex n,. The column label (2) givesd(n,,n,)
while the row label (y) then links back to the previous vertex on a shortest length n, — n, path.
Go to vertex y. Suppose that the (permanent) label of vertex y is (w,), then the next previous
vertex is w on a shortest length n, — y path. This process continues until vertex n, is reached.
Hence the shortest path is

n,— ..o wW—Yy—n,

which has length d(n,,n,).

9 Example

To find the shortest path between vertices 1 and 11 for the undirected network

9.1 Program Text

HO3ADF Example Program Text

* Mark 18 Release. NAG Copyright 1997.
.. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

HO3ADF 4 [NP3086/18]

H - Operations Research

INTEGER NMAX, NNZMAX
PARAMETER (NMAX=100,NNZMAX=1000)
CHARACTER DUP, ZERO
PARAMETER (DUP=’Fail’,ZERO='Remove’)
* . Local Scalars ..
real SPLEN
INTEGER IFAIL, J, LENC, N, NE, NNZ, NS
LOGICAL DIRECT
* . Local Arrays ..
real D(NNZMAX), WORK(2*NMAX)
INTEGER ICOL(NNZMAX), IROW(NNZMAX), IWORK(3*NMAX+1),
+ PATH(NMAX)
* . External Subroutines ..
EXTERNAL F11ZAF, HO3ADF

20

40

*

99999
99998

[NP3086/18]

. Executable Statements ..
WRITE (NOUT,*) ’HO3ADF Example Program Results’
Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, NS, NE, NNZ, DIRECT
IF (N.LE.NMAX .AND. NNZ.LE.NNZMAX) THEN
Read D, IROW and ICOL from data file.
READ (NIN,*) (D(J),IROW(J),ICOL(J),J=1,KNZ)
Reorder the elements of D into the form required by HO3ADF.

IFAIL = 0
CALL F11ZAF(N,NNZ,D,IROW,ICOL,DUP,ZERO,IWORK,IWORK(N+2),IFAIL)

Find the shortest path between vertices NS and NE.

IFAIL = 0

CALL HO3ADF(N,NS,NE,DIRECT,NNZ,D,IROW,ICOL,SPLEN,PATH,IVWORK,
WORK, IFAIL)

IF (IFAIL.EQ.O) THEN

Print details of shortest path.

D0 20J =0, N-1
IF (PATH(J+1).EQ.0) THEN

LENC = J
GO TO 40
END IF
CONTINUE
LENC = N
CONTINUE
WRITE (NOUT,99999) ’Shortest path = ’, (PATH(J),J=1,LENC)
WRITE (NOUT,99998) ’Length of shortest path = ’, SPLEN
END IF
END IF
STOP

FORMAT (/1X,4,10(I2,:’ to ’))
FORMAT (/1X,4,G16.6)
END

HO3ADF

HO3ADF.5

HO3ADF H - Operations Research

9.2 Program Data

HO3ADF Example Program Data
11 1 11 20 F :Values of N, NS, NE, NNZ and DIRECT

6.0 6 8
1.0 8 9
2.0 9 11
4.0 2 5
1.0 3 4
6.0 1 3
4.0 3 6
1.0 4 6
2.0 2 3
3.0 4 7
5.0 1 2
7.0 6 10
1.0 5 6
4.0 8 11
9.0 5 9
1.0 6 7
8.0 7 9
4.0 10 11
2.0 9 10
5.0 1 4 :End of D, IROW, ICOL

9.3 Program Results
HO3ADF Example Program Results
Shortest path = 1 to 4 to 6 to 8 to 9 to 11

Length of shortest path = 15.0000

HO3ADF.6 (last) [NP3086/18]

Chapter MO01 — Sorting

Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine
Name

MO1CAF
MO1CBF
MO1CCF
MO1DAF
MO1DBF
MO1DCF
MO1DEF
MO1DFF
MO1DJF
MO1DKF
MO1DZF
MO1EAF
MO1EBF
MO1ECF
MO1ZAF
MO1ZBF
MO1ZCF

Mark of
Introduction

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

Purpose

Sort a vector, real numbers

Sort a vector, integer numbers

Sort a vector, character data

Rank a vector, real numbers

Rank a vector, integer numbers

Rank a vector, character data

Rank rows of a matrix, real numbers

Rank rows of a matrix, integer numbers

Rank columns of a matrix, real numbers

Rank columns of a matrix, integer numbers

Rank arbitrary data

Rearrange a vector according to given ranks, real numbers
Rearrange a vector according to given ranks, integer numbers
Rearrange a vector according to given ranks, character data
Invert a permutation

Check validity of a permutation

Decompose a permutation into cycles

M01 - Sorting

Chapter MO01

Sorting

Contents

1 Scope of the Chapter

2 Background to the Problems

3 Recommendations on Choice and Use of Available Routines
4 Index

5 Routines Withdrawn or Scheduled for Withdrawal

6 References

[NP3086/18]

Introduction — M01

MO01.1

Introduction - M01 MO01 - Sorting

1 Scope of the Chapter

This chapter is concerned with sorting numeric or character data. It handles only the simplest types of
data structure and it is concerned only with internal sorting — that is, sorting a set of data which can
all be stored within the program.

Users with large files of data or complex data structures to be sorted should use a comprehensive sorting
program or package.

2 Background to the Problems

The usefulness of sorting is obvious (perhaps a little too obvious, since sorting can be expensive and
is sometimes done when not strictly necessary). Sorting may traditionally be associated with data
processing and non-numerical programming, but it has many uses within the realm of numerical analysis.
For example, within the NAG Fortran Library, sorting is used to arrange eigenvalues in ascending
order of absolute value; in the manipulation of sparse matrices and in the ranking of observations for

nonparametric statistics.

The general problem may be defined as follows. We are given N items of data
R R,,...,Ry.

Each item R, contains a key K; which can be ordered relative to any other key according to some specified
criterion (for example, ascending numeric value). The problem is to determine a permutation

p(1),p(2),...,p(N)

which puts the keys in order:

Sometimes we may wish actually to rearrange the items so that their keys are in order; for other purposes
we may simply require a table of indices so that the items can be referred to in sorted order; or yet again
we may require a table of ranks, that is, the positions of each item in the sorted order.

For example, given the single-character items, to be sorted into alphabetic order:
EBADC

the indices of the items in sorted order are
32541

and the ranks of the items are
52143.

Indices may be converted to ranks, and vice versa, by simply computing the inverse permutation.

The items may consist solely of the key (each item may simply be a number). On the other hand, the
items may contain additional information (for example, each item may be an eigenvalue of a matrix and
its associated eigenvector, the eigenvalue being the key). In the latter case there may be many distinct
items with equal keys, and it may be important to preserve the original order among them (if this is
achieved, the sorting is called ‘stable’).

There are a number of ingenious algorithms for sorting. For a fascinating discussion of them, and of the
whole subject, see Knuth [1].

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

Four categories of routines are provided:

- routines which rearrange the data into sorted order (M01C-);

M01.2 [NP3086/18]

M01 - Sorting Introduction - M01

- routines which determine the ranks of the data, leaving the data unchanged (M01D-);
— routines which rearrange the data according to pre-determined ranks (MO1E-);

- service routines (M01Z-).

In the first three categories, routines are provided for real and integer numeric data, and for character
data. Utilities for the manipulation of sparse matrices can be found in Chapter F11.

If the task is simply to rearrange a one-dimensional array of data into sorted order, then an MO01C- routine
should be used, since this requires no extra workspace and is faster than any other method. There are no
MO1C- routines for more complicated data structures, because the cost of rearranging the data is likely
to outstrip the cost of comparisons. Instead, a combination of MO1D- and MO1E- routines, or some other
approach, must be used as described below.

For many applications it is in fact preferable to separate the task of determining the sorted order (ranking)
from the task of rearranging data into a pre-determined order; the latter task may not need to be
performed at all. Frequently it may be sufficient to refer to the data in sorted order via an index vector,
without rearranging it. Frequently also one set of data (e.g. a column of a matrix) is used for determining
a set of ranks, which are then applied to other data (e.g. the remaining columns of the matrix).

To determine the ranks of a set of data, use an MO1D- routine. Routines are provided for ranking one-
dimensional arrays, and for ranking rows or columns of two-dimensional arrays. For ranking an arbitrary
data structure, use MO1DZF, which is, however, much less efficient than the other MO1D- routines.

To create an index vector so that data can be referred to in sorted order, first call an M01D- routine to
determine the ranks, and then call MO1ZAF to convert the vector of ranks into an index vector.

To rearrange data according to pre-determined ranks: use an MO1E- routine if the data is stored in a
one-dimensional array; or if the data is stored in a more complicated structure

either use an index vector to generate a new copy of the data in the desired order

or rearrange the data without using extra storage by first calling MO1ZCF and then using the simple
code-framework given in the document for MO1ZCF (assuming that the elements of data all occupy
equal storage).

Examples of these operations can be found in the routine documents of the relevant routines.

4 Index
Ranking:
arbitrary data MO1DZF
columns of a matrix, integer numbers MO1DKF
columns of a matrix, real numbers MO1DJF
rows of a matrix, integer numbers MO1DFF
rows of a matrix, real numbers MO1DEF
vector, character data MO1iDCF
vector, integer numbers MO1DBF
vector, real numbers MO1DAF
Rearranging (according to pre-determined ranks):
vector, character data MO1ECF
vector, integer numbers MO1EBF
vector, real numbers MO1EAF
Service routines: :
check validity of a permutation MO1ZBF
decompose a permutation into cycles MO1ZCF
invert a permutation (ranks to indices or vice versa) MO1ZAF
Sorting (i.e., rearranging into sorted order):
vector, character data MO1CCF
vector, integer numbers MO1CBF
vector, real numbers MO1CAF

[NP3086/18] M01.3

Introduction — M01 MO01 - Sorting

5 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have been withdrawn. Advice on replacing calls to these routines
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

MO1AAF MO1ABF MO1ACF MO1ADF MO1AEF MOIAFF
MO1AGF MO1AHF MO1AJF MO1AKF MOIALF MO1AMF
MO1ANF MO1APF MO1AQF MO1ARF MO1BAF MO1BBF
MO01BCF MO1BDF

6 References

[1] Knuth D E (1973) The Art of Computer Programming (Volume 3) Addison-Wesley (2nd Edition)

MO01.4 (last) [NP3086/18]

MO! — Sorting MO1CAF

MO1CAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
MO1CAF rearranges a vector of real numbers into ascending or descending order.
Specification

SUBROUTINE MO1CAF (RV, M1, M2, ORDER, IFAIL)

INTEGER M1, M2, IFAIL

real RV (M2)

CHARACTER*1 ORDER

Description

MO1CAF is based on Singleton’s implementation of the ‘median-of-three’ Quicksort algorithm
[2], but with two additional modifications. First, small subfiles are sorted by an insertion sort on
a separate final pass (Sedgewick [1]). Second, if a subfile is partitioned into two very
unbalanced subfiles, the larger of them is flagged for special treatment: before it is partitioned, its
end-points are swapped with two random points within it; this makes the worst case behaviour
extremely unlikely.

References

(1] SEDGEWICK, R.
Implementing Quicksort programs.
Comm. ACM 21, pp. 847-857, 1978.

[2] SINGLETON, R.C.
An efficient algorithm for sorting with minimal storage: Algorithm 347.
Comm. ACM 12, pp. 185-187, 1969.

Parameters

RV(M2) - real array. Input/ Output
On entry: elements M1 to M2 of RV must contain real values to be sorted.
On exit: these values are rearranged into sorted order.

M1 - INTEGER. Input
On entry: the index of the first element of RV to be sorted.
Constraint: M1 > 0,

M2 - INTEGER. Input
On entry: the index of the last element of RV to be sorted.
Constraint: M2 2 MI1.

ORDER -~ CHARACTER*1. Input

Onentry: if ORDER is ‘A" or ‘a, the values will be sorted into ascending (i.e.
non-decreasing) order; if ORDER is 'D' or 'd’, into descending order.

Constraint. ORDER = ‘A’, 'a', D' or 'd".

[NP1692/14] Page 1

MO1CAF MO1 — Sorting

5:

9.1.

Page 2

IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M2 < 1,
or Ml < 1,
or M1l > M2.
IFAIL = 2

On entry, ORDER is not ‘A, 'a', 'D' or 'd".

Accuracy
Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n = M2 — M1 + 1. The worst case time is proportional to n® but this is extremely unlikely to
occur.

Example
The example program reads a list of real numbers and sorts them into ascending order.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1CAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NMAX
PARAMETER (NMAX=100)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, N
* .. Local Arrays ..
real RV (NMAX)
* .. External Subroutines ..
EXTERNAL MO1CAF
* .. Executable Statements ..
WRITE (NOUT,*) ‘MOlCAF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) N

IF (N.GE.l1 .AND. N.LE.NMAX) THEN
READ (NIN,*) (RV(I),I=1,N)
IFAIL = 0

[NP1692/14]

MOI - Sorting MO1CAF

CALL MO1CAF(RV,1,N,’Ascending’, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’Sorted numbers’
WRITE (NOUT, *)
WRITE (NOUT,99999) (RV(I),I=1,N)
END IF
STOP
*
99999 FORMAT (1X,10F7.1)
END

9.2. Program Data

MO1CAF Example Program Data
16

1.3 5.9 4.1 2.3 0.5
2.3 0.5 6.5 9.9 2.1

=0

.8 1.3 6.5
.11.2 8.6
9.3. Program Results

MO1CAF Example Program Results

Sorted numbers

0.5 0.5 1.1
5.8 5.9 6.5

oaNn
@
o Ww

[0 o
o

[NP1692114] Page 3 (last)

MOI - Sorting MO1CBF

MO1CBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
MO1CBF rearranges a vector of integer numbers into ascending or descending order.

Specification
SUBROUTINE MO1CBF (IV, M1, M2, ORDER, IFAIL)

INTEGER IV(M2), M1, M2, IFAIL
CHARACTER*1 ORDER

Description

MO1CBF is based on Singleton’s implementation of the ‘median-of-three’ Quicksort algorithm
[2], but with two additional modifications. First, small subfiles are sorted by an insertion sort on
a separate final pass (Sedgewick [1]). Second, if a subfile is partitioned into two very
unbalanced subfiles, the larger of them is flagged for special treatment: before it is partitioned, its
end-points are swapped with two random points within it; this makes the worst case behaviour
extremely unlikely.

References

[1] SEDGEWICK, R.
Implementing Quicksort programs.
Comm. ACM 21, pp. 847-857, 1978.

[2] SINGLETON, R.C.
An efficient algorithm for sorting with minimal storage: Algorithm 347.
Comm. ACM 12, pp. 185-187, 1969.

Parameters

IV(M2) — INTEGER array. Input/ Output
On entry: elements M1 to M2 of IV must contain integer values to be sorted.
On exit: these values are rearranged into sorted order.

M1 — INTEGER. Input
On entry: the index of the first element of IV to be sorted.
Constraint: M1 > 0.

M2 — INTEGER. Input
On entry: the index of the last element of IV to be sorted.
Constraint: M2 2 MI1.

ORDER - CHARACTER*1. Input

Onentry: if ORDER is 'A’' or 'a', the values will be sorted into ascending (i.e.
non-decreasing) order; if ORDER is ‘D' or 'd', into descending order.

Constraint: ORDER = ‘A', 'a’, D' or 'd.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP1692/14] Page 1

MO1CBF MO1 — Sorting

6.

9.1.

Page 2

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M2 < 1,
or Ml < 1,
or M1 > M2.
IFAIL = 2

On entry, ORDER is not ‘A, a', D' or 'd".

Accuracy
Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n = M2 — M1 + 1. The worst case time is proportional to n® but this is extremely unlikely to
occur.

Example
The example program reads a list of integers and sorts them into descending order.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1CBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters .
INTEGER NMAX
PARAMETER (NMAX=100)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, N
* .. Local Arrays ..
INTEGER IV (NMAX)
* .. External Subroutines
EXTERNAL MO1CBF
* .. Executable Statements ..
WRITE (NOUT,*) ’'MO1CBF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) N

IF (N.GE.l1 .AND. N.LE.NMAX) THEN
READ (NIN,*) (IV(I),I=1,N)
IFAIL = 0

CALL MO1CBF(1IV,1,N,’Descending’,IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’Sorted numbers’
WRITE (NOUT, *)
WRITE (NOUT,99999) (IV(I),I=1,N)
END IF
STOP

99999 FORMAT (1X,10I7)
END

[NP1692/14)

MO1 - Sorting MO1CBF

9.2. Program Data

MO1CBF Example Program Data

16

23 45 45 67 69 90 999 1

78 112 24 69 96 99 45 78
9.3. Program Results

MO1CBF Example Program Results
Sorted numbers

999 112 99 96 90 78 78 69 69 67
45 45 45 24 23 1

[NP1692/14] Page 3 (last)

MOI - Sorting MO1CCF

MO1CCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

MO1CCF rearranges a vector of character data so that a specified substring is in ASCII or reverse
ASCII order.

Specification
SUBROUTINE MO1CCF (CH, M1, M2, L1, L2, ORDER, IFAIL)
INTEGER M1, M2, L1, L2, IFAIL

CHARACTER*1 ORDER
CHARACTER* (*) CH(M2)

Description

MO1CCF is based on Singleton’s implementation of the ‘median-of-three’ Quicksort algorithm
[2], but with two additional modifications. First, small subfiles are sorted by an insertion sort on
a separate final pass (Sedgewick [1]). Second, if a subfile is partitioned into two' very
unbalanced subfiles, the larger of them is flagged for special treatment: before it is partitioned, its
end-points are swapped with two random points within it; this makes the worst case behaviour
extremely unlikely.

Only the substring (L1:L2) of each element of the array CH is used to determine the sorted
order, but the entire elements are rearranged into sorted order.

References

[1] SEDGEWICK, R.
Implementing Quicksort programs.
Comm. ACM 21, pp. 847-857, 1978.

[2] SINGLETON, R.C.
An efficient algorithm for sorting with minimal storage: Algorithm 347.
Comm. ACM 12, pp. 185-187, 1969.

Parameters

CH(M2) — CHARACTER*(*) array. Input/ Output
On entry: elements M1 to M2 of CH must contain character data to be sorted.
Constraint: the length of each element of CH must not exceed 25S5.
On exit: these values are rearranged into sorted order.

M1 - INTEGER. Input
On entry: the index of the first element of CH to be sorted.
Constraint: M1 > 0.

M2 — INTEGER. Input
On entry: the index of the last element of CH to be sorted.
Constraint: M2 2 Ml1.

[NP1692/14] Page 1

MO1CCF MO1 — Sorting

4: L1 - INTEGER. Input

5: L2 — INTEGER. Input
On entry: only the substring (L1:L2) of each element of CH is to be used in determining the
sorted order.
Constraint: 0 < L1 < L2 < LEN(CH(1)).

6: ORDER — CHARACTER*1. Input

On entry: if ORDER is ‘A’ or ', the values will be sorted into ASCII order; if ORDER is R’
or ', into reverse ASCII order.

Constraint: ORDER = ‘A", 'a’, R'or I'.

7: IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, M2 < 1,

or Ml < 1,

or Ml > M2,

or L2 <1,

or Ll <1,

or L1 > L2,

or L2 > LEN(CH(1)).
IFAIL = 2

On entry, ORDER is not ‘A', ', R' or T'.

IFAIL = 3
On entry, the length of each element of CH exceeds 255.

7. Accuracy
Not applicable.

8. Further Comments

The average time taken by the routine is approximately proportional to nxlog n, where
n = M2 — M1 + 1. The worst case time is proportional to n?, but this is extremely unlikely to
occur.

The routine relies on the Fortran 77 intrinsic functions LLT and LGT to order characters
according to the ASCII collating sequence.

9. Example

The example program reads a file of 12-character records, and sorts them into reverse ASCII
order on characters 7 to 12.

Page 2 [NP1692/14]

MO! — Sorting

MO1CCF

9.1. Program Text

Note: the listing of the cxample program presented below uses bold italicised terms to denot precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20
40

*

99999
99998

MO1CCF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX
PARAMETER (MMAX=100)

.. Local Scalars ..

INTEGER I, IFAIL, L1, L2, M
.. Local Arrays ..

CHARACTER*12 CH(MMAX)

.. External Subroutines ..
EXTERNAL MO1CCF

.. Executable Statements ..
WRITE (NOUT,*) 'MO1CCF Example Program Results’
Skip heading in data file
READ (NIN, *)
DO 20 M = 1, MMAX
READ (NIN,’(A)’,END=40) CH(M)
CONTINUE
M=M-1
L1 = 7
L2 = 12
IFAIL = 0

CALL MO1CCF(CH,1,M,L1,L2,’Reverse ASCII’,IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) ’Records sorted on columns ', L1, ' to ', L2
WRITE (NOUT, *)

WRITE (NOUT,99998) (CH(I),I=1,M)

STOP

FORMAT (1X,A,I2,A,I2)
FORMAT (1X,A)
END

9.2. Program Data

MO1CCF
AQ2AAF
AQO2ABF
A02ACF
CO2ADF
CO2AEF
CO5ADF
CO5AGF
CO5AJF
COS5AVF
CO5AXF
CO5AZF

[NP1692/14]

Example Program Data
289
523
531
169
599

1351
240
136
211
183

2181

Page 3

MO01CCF MOI - Sorting

9.3. Program Results
MO1CCF Example Program Results

Records sorted on columns 7 to 12

CO05AzZF 2181
CO5ADF 1351
CO2AEF 599
AQ2ACF 531
AQ2ABF 523
AQ2AAF 289
COS5AGF 240
CO5AVF 211
CO5AXF 183
CO2ADF 169
CO5AJF 136

Page 4 (last) [NP1692/14]

MO1 - Sorting MO1DAF

MO1DAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
MOIDAF ranks a vector of real numbers in ascending or descending order.
Specification
SUBROUTINE MO1DAF (RV, M1, M2, ORDER, IRANK, IFAIL)
INTEGER M1, M2, IRANK(M2), IFAIL
real RV (M2)

CHARACTER*1 ORDER

Description

MOIDAF uses a variant of list-merging, as described by Knuth [1] pp. 165-166. The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory
pass to generate ordered lists of length at least 10. The ranking is stable: equal elements preserve
their ordering in the input data.

References

[1] KNUTH, DE.
The Art of Computer Programming, (Vol. 3, Sorting and Searching).
Addison Wesley, 1973

Parameters
RV(M2) - real array. Input
On entry: elements M1 to M2 of RV must contain real values to be ranked.

M1 - INTEGER. Input
On entry: the index of the first element of RV to be ranked.
Constraint: M1 > 0.

M2 - INTEGER. Input
On entry: the index of the last element of RV to be ranked.
Constraint: M2 2 M1.

ORDER - CHARACTER*1. Input

On entry: if ORDER is ‘A’ or ‘a/, the values will be ranked in ascending (i.e. non-decreasing)
order; if ORDER is D' or 'd', into descending order.

Constraint: ORDER = A', 'a', 'D' or 'd".

IRANK(M2) — INTEGER array. Output

Onexit: elements M1 to M2 of IRANK contain the ranks of the corresponding elements of
RV. Note that the ranks are in the range M1 to M2: thus, if RV (i) is the first element in the
rank order, IRANK (i) is set to M1,

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP1692/14] Page 1

MO1DAF MO1 - Sorting

6.

9.1.

Page 2

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M2 < 1,
or Ml < 1,
or M1 > M2.
IFAIL = 2
On entry, ORDER is not ‘A, 'a', 'D' or 'd".

Accuracy
Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n=M2-Ml+ 1

Example

The example program reads a list of real numbers and ranks them in ascending order.

Program Text

Note: the listing of the example program presented below uscs bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1DAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NMAX
PARAMETER (NMAX=100)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, N
* .. Local Arrays ..
real RV (NMAX)
INTEGER IRANK(NMAX)
* .. External Subroutines ..
EXTERNAL MO1DAF
* .. Executable Statements ..
WRITE (NOUT,*) ’MO1lDAF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) N

IF (N.GE.1 .AND. N.LE.NMAX) THEN
READ (NIN,*) (RV(I),I=1,N)
IFAIL = 0

[NP1692/14)

MO1 — Sorting MO1DAF

CALL MO1DAF(RV,1,N,’Ascending’, IRANK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ' Data Ranks’
WRITE (NOUT, *)
DO 20 I =1, N
WRITE (NOUT, 99999) RV(I), IRANK(I)
20 CONTINUE
END IF
STOP
*
99999 FORMAT (1X,F7.1,I7)
END

9.2. Program Data

MO1DAF Example Program Data
12
5.3 4.6 7.8 1.7 5.3 9.9 3.2 4.3 7.8 4.5 1.2 7.6

9.3. Program Results
MO1DAF Example Program Results

Data Ranks

...

ANNOWNOWIOOW
[=

CHUREBWNONO G

NREAIWOOUR IO
-

[NP1692/14) Page 3 (last)

MOI - Sorting MO1DBF

MO1DBF - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose |
MOIDBF ranks a vector of integer numbers in ascending or descending order.

Specification
SUBROUTINE MO1DBF (IV, M1, M2, ORDER, IRANK, IFAIL)

INTEGER Iv(M2), M1, M2, IRANK(M2), IFAIL
CHARACTER*1 ORDER

Description

MOIDBF uses a variant of list-merging, as described by Knuth [1] pp. 165-166. The routine takes
advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal elements preserve their
ordering in the input data.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 3, Sorting and Searching).
Addison Wesley, 1973

Parameters
IV(M2) — INTEGER array. Input
On entry: elements M1 to M2 of IV must contain integer values to be ranked.

M1 - INTEGER. Input
On entry: the index of the first element of IV to be ranked.
Constraint: M1 > 0.

M2 - INTEGER. Input
On entry: M2 must specify the index of the last element of IV to be ranked.
Constraint: M2 2 Ml.

ORDER - CHARACTER*1. Input

Onentry: if ORDER is ‘A’ or ‘2, the values will be ranked in ascending (i.e. non-decreasing)
order; if ORDER is D' or 'd', into descending order.

Constraint: ORDER = ‘A', a', D' or 'd".

IRANK (M2) — INTEGER array. Output

On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding elements of
IV. Note that the ranks are in the range M1 to M2: thus, if IV (i) is the first element in the
rank order, IRANK (i) is set to Ml1.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP1692114) Page 1

MO1DBF MOI — Sorting

6.

9.1.

Page 2

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M2 < 1,
or Ml < 1,
or M1 > M2.
IFAIL = 2

On entry, ORDER is not ‘A', 'a', 'D' or 'd".

Accuracy
Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n=M2-Ml+1 :
Example

The example program reads a list of integers and ranks them in descending order.

Program Text

Note: the listing of the example program prescnted below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1DBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NMAX

PARAMETER (NMAX=100)

INTEGER NIN, NOUT

PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..

INTEGER I, IFAIL, N
* .. Local Arrays ..

INTEGER IRANK(NMAX), IV(NMAX)
* .. External Subroutines ..

EXTERNAL MO1DBF
* .. Executable Statements ..

WRITE (NOUT,*) ‘MO1DBF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) N

IF (N.GE.l1 .AND. N.LE.NMAX) THEN
READ (NIN,*) (IV(I),I=1,N)
IFAIL = 0

[NP1692/14)

MOI - Sorting MO1DBF

CALL MO1lDBF(IV,1,N,’'Descending’, IRANK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’ Data Ranks’
WRITE (NOUT, *)
DO 20 I =1, N
WRITE (NOUT,99999) IV(I), IRANK(I)
20 CONTINUE
END IF
STOP
*
99999 FORMAT (1X,2I7)
END

9.2. Program Data

MO1DBF Example Program Data
12

34 44 89 64 69 69 23 1 999 65 22 76

9.3. Program Results
MO1DBF Example Program Results

Data Ranks

34
44
89
64

o
W
i
WHROARNOUIA JIN®W®

N
N
[

[NP1692/14] Page 3 (last)

MO1 - Sorting MO1DCF

MO1DCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

MOIDCF ranks a vector of character data in ASCII or reverse ASCII order of a specified
substring.

2. Specification
SUBROUTINE MO1DCF (CH, M1, M2, L1, L2, ORDER, IRANK, IFAIL)

INTEGER M1, M2, L1, L2, IRANK(M2), IFAIL
CHARACTER*1 ORDER
CHARACTER* (*) CH(M2)

3. Description

MO1DCEF uses a variant of list-merging, as described by Knuth [1] pp. 165-166. The routine takes
advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal elements preserve their
ordering in the input data.

Only the substring (L1:L2) of each element of the array CH is used to determine the rank order.

4. References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 3, Sorting and Searching).
Addison Wesley, 1973

5. Parameters
CH(M2) — CHARACTER*(*) array. Input
On entry: elements M1 to M2 of CH must contain character data to be ranked.
Constraint: the length of each element of CH must not exceed 255.

2: M1 - INTEGER. Input
On entry: the index of the first element of CH to be ranked.
Constraint: M1 > 0.

3: M2 - INTEGER. Input
On entry: the index of the last element of CH to be ranked.
Constraint: M2 2 M1.

4. L1 - INTEGER. Input

5: L2 - INTEGER. Input
On entry: only the substring (L1:L2) of each element of CH is to be used in determining the
rank order.

Constraint: 0 < L1 £ L2 £ LEN(CH(1))

6: ORDER — CHARACTER*1. Input

On entry: if ORDER is ‘A’ or 'a', the values will be ranked in ASCII order; if ORDER is 'R’
or r', in reverse ASCII order.

Constraint. ORDER = ‘A", a', R'or Y.

[NP1692/14] Page 1

MO1DCF MOI - Sorting

9.1.

Page 2

IRANK(M2) — INTEGER array. Output

On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding elements of
CH. Note that the ranks are in the range M1 to M2: thus, if CH(i) is the first element in the
rank order, IRANK (i) is set to M1.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, M2 < 1,

or Ml < 1,

or Ml > M2,

or L2 <1,

or Ll <1,

or L1 > L2,

or L2 > LEN(CH(1)).
IFAIL = 2

On entry, ORDER is not ‘A', a', R' or T'.

IFAIL = 3
On entry, the length of each element of CH exceeds 255.

Accuracy
Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n=M2-Ml+ 1

The routine relies on the Fortran 77 intrinsic functions LLT and LGT to order characters
according to the ASCII collating sequence.

Example

The example program reads a file of 12-character records, and ranks them in reverse ASCII order
on characters 7 to 12.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1DCF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MMAX
PARAMETER (MMAX=100)

[NP1692/14]

MO1 - Sorting MO1DCF

* .. Local Scalars
INTEGER I, IFAIL, L1, L2, M
* .. Local Arrays
INTEGER IRANK(MMAX)
CHARACTER*12 CH(MMAX)
* .. External Subroutines
EXTERNAL MO1DCF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘MO1DCF Example Program Results’
* Skip heading in data file

READ (NIN, *)
DO 20 M = 1, MMAX
READ (NIN,’(A)’,END=40) CH(M)

20 CONTINUE
40M=M-1

Ll =7

L2 = 12

IFAIL = 0

CALL MO1DCF(CH,1,M,L1,L2,'Reverse ASCII’, IRANK,IFAIL)

WRITE (NOUT, *)
WRITE (NOUT, 99999) ’Records ranked on columns ’, L1, ' to '/, L2
WRITE (NOUT, *)
WRITE (NOUT,*) ’Data Ranks’
WRITE (NOUT, %)
WRITE (NOUT,99998) (CH(I),IRANK(I),I=1,M)
STOP

*

99999 FORMAT (1X,A,I2,A,I2)

99998 FORMAT (1X,A,I7)
END

9.2. Program Data

MO1DCF Example Program Data
AQ2AAF 289
AQ2ABF 523
AQ2ACF 531
CO2ADF 169
CO2AEF 599
CO5ADF 1351
CO5AGF 240
CO5AJ0F 136
COS5AVF 211
CO5AXF 183
CO5AzZF 2181

9.3. Program Results
MO1DCF Example Program Results

Records ranked on columns 7 to 12

Data Ranks
AQ2AAF 289 6
AQO2ABF 523 5
AQ2ACF 531 4
CO02ADF 169 10
CO2AEF 599 3
CO05ADF 1351 2
CO5AGF 240 7
CO5AJF 136 11
COS5AVF 211 8
CO5AXF 183 9
CcO05AzF 2181 1

[NP1692/14] Page 3 (last)

MOI - Sorting MO1DEF

MO1DEF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
MO1DEF ranks the rows of a matrix of real numbers in ascending or descending order.
Specification
SUBROUTINE MO1DEF (RM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)
INTEGER LDM, M1, M2, N1, N2, IRANK(M2), IFAIL
real RM(LDM, N2)

CHARACTER~*1 ORDER

Description

MO1DEF ranks rows M1 to M2 of a matrix, using the data in columns N1 to N2 of those rows.
The ordering is determined by first ranking the data in column N1, then ranking any tied rows
according to the data in column N1 + 1, and so on up to column N2,

MO1DEEF uses a variant of list-merging, as described by Knuth [1] pp. 165-166. The routine takes
advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal rows preserve their
ordering in the input data.

References

(1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 3, Sorting and Searching).
Addison Wesley, 1973

Parameters
RM(LDM,N2) — real array. Input
On entry: columns N1 to N2 of rows M1 to M2 of RM must contain real data to be ranked.

LDM - INTEGER. Input

On entry: the first dimension of the array RM as declared in the (sub)program from which
MO1DEEF is called.

Constraint: LDM =2 M2,

M1 - INTEGER. Input
On entry: the index of the first row of RM to be ranked.
Constraint: M1 > 0.

M2 — INTEGER. Input
On entry: the index of the last row of RM to be ranked.
Constraint: M2 2 M1,

N1 - INTEGER. Input
On entry: the index of the first column of RM to be used.
Constraint: N1 > 0.

[NP1692/14] Page 1

MO1DEF MO1 — Sorting

6: N2 — INTEGER. Input
On entry: the index of the last column of RM to be used.
Constraint: N2 2 NI1.

7: ORDER — CHARACTER*1. Input

On entry: if ORDER is ‘A’ or ‘2, the rows will be ranked in ascending (i.e. non-decreasing)
order; if ORDER is 'D' or 'd’, into descending order.

Constraint: ORDER = ‘A', a', D' or 'd'.

8: IRANK(M2) — INTEGER array. Output

On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding rows of RM.
Note that the ranks are in the range M1 to M2: thus, if the ith row of RM is the first in the
rank order, IRANK (i) is set to M1.

9: IFAIL - INTEGER. Input/ Output

On entry. IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, M2 < 1,
or N2 <1,
or Ml < 1,
or M1 > M2,
or Nl < 1,
or N1 > N2,
or LDM < M2.
IFAIL = 2

On entry, ORDER is not ‘A, a', D' or 'd".

7. Accuracy
Not applicable.

8. Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n=M2- Ml + 1.

9. Example
The example program reads a matrix of real numbers and ranks the rows in ascending order.

Page 2 [NP1692/14])

MO1 - Sorting MO1DEF

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

40

*

99999

MO1DEF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER MMAX, NMAX
PARAMETER (MMAX=20, NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)

.. Local Scalars ..

INTEGER I, IFAIL, J, M, N
.. Local Arrays ..

real RM(MMAX, NMAX)
INTEGER IRANK(MMAX)

.. External Subroutines ..
EXTERNAL MO1DEF

.. Executable Statements ..
WRITE (NOUT,*) ’'MO1DEF Example Program Results’
Skip heading in data file
READ (NIN, *)
READ (NIN,*) M, N
IF (M.GE.l1 .AND. M.LE.MMAX .AND. N.GE.l .AND. N.LE.NMAX) THEN
DO 20 I =1, M
READ (NIN,*) (RM(I,J),J=1,N)
CONTINUE
IFAIL = 0

CALL MO1DEF(RM,MMAX,1,M,1,N,’Ascending’, IRANK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’Data Ranks’
WRITE (NOUT, %)
DO 40 I =1, M
WRITE (NOUT, 99999) (RM(I,J),J=1,N), IRANK(I)
CONTINUE
END IF
STOP

FORMAT (1X,3F7.1,I11)
END

9.2. Program Data
MO1DEF Example Program Data

12 3

* e e e e

BPOAOREDNWBRLBNO O
[ojoloNoloNololoNoNoNoNa)

(NP1692/14]

ONWHARBRFROOBMNDOG

.
.

s e s e . « s e
L I

[ejeolojoloNoNoNoloNoNoNe)
AN NOONOH D

QOO0 O0CO0OO0ODO0ODO0OOO O

Page 3

MO1I - Sorting

MO1DEF

9.3. Program Results

MO1lDEF Example Program Results

Ranks

Data

HOAONM>OVOINITANAHNO ©
I ~

000000000000

419652164256

OCOO0OO0OO0COO0OOO0OO0OO0OOCO

MANFON AT OMNND

000000000000

65244432196

[NP1692/14])

Page 4 (last)

MOI - Sorting MO1DFF

MO1DFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
MOI1DFF ranks the rows of a matrix of integer numbers in ascending or descending order.

2. Specification
SUBROUTINE MO1DFF (IM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)

INTEGER IM(LDM,N2), LDM, M1, M2, N1, N2, IRANK(M2), IFAIL
CHARACTER*1 ORDER

3. Description

MOIDFF ranks rows M1 to M2 of a matrix, using the data in columns N1 to N2 of those rows.
The ordering is determined by first ranking the data in column N1, then ranking any tied rows
according to the data in column N1 + 1, and so on up to column N2.

MO1DFF uses a variant of list-merging, as described by Knuth [1] pp. 165-166. The routine takes
advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal rows preserve their
ordering in the input data.

4. References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 3, Sorting and Searching).
Addison Wesley, 1973

5. Parameters

1: IM(LDM,N2) — INTEGER array. Input
On entry: columns N1 to N2 of rows M1 to M2 of IM must contain INTEGER data to be
ranked.

2: LDM - INTEGER. Input

On entry: the first dimension of the array IM as declared in the (sub)program from which
MO1DFF is called.

Constraint. LDM 2 M2.

3: Ml - INTEGER. Input
On entry: the index of the first row of IM to be ranked.
Constraint: M1 > 0.

4: M2 - INTEGER. Input
On entry: the index of the last row of IM to be ranked.
Constraint: M2 2 M1,

5: N1 — INTEGER. Input
On entry: the index of the first column of IM to be used.
Constraint: N1 > 0.

[NP1692/14] Page 1

MO1DFF MOI - Sorting

6:

Page 2

N2 — INTEGER. Input
On entry: the index of the last column of IM to be used.
Constraint: N2 2 N1.

ORDER - CHARACTER*1. Input

On entry: if ORDER is ‘A’ or 'a', the rows will be ranked in ascending (i.e. non-decreasing)
order; if ORDER is 'D' or 'd’, into descending order.

Constraint: ORDER = ‘A', a', D' or 'd'.

IRANK(M2) — INTEGER array. Output

On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding rows of IM.
Note that the ranks are in the range M1 to M2: thus, if the ith row of IM is the first in the
rank order, IRANK (i) is set to M1.

IFAIL — INTEGER. Input/ Qutput

Onentry: TIFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, M2 < 1,
or N2 <1,
or Ml < 1,
or Ml > M2,
or Nl < 1,
or N1 > N2,
or LDM < M2.
IFAIL = 2

On entry, ORDER is not ‘A', 'a', 'D' or 'd".

Accuracy
Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n=M2-Ml+ 1

Example
The example program reads a matrix of integers and ranks the rows in descending order.

[NP1692/14]

MOI — Sorting MO1DFF

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1DFF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER MMAX, NMAX
PARAMETER (MMAX=20, NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, J, M, N
* .. Local Arrays ..
INTEGER IM(MMAX, NMAX), IRANK(MMAX)
* .. External Subroutines
EXTERNAL MO1DFF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘MO1DFF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N
IF (M.GE.1 .AND. M.LE.MMAX .AND. N.GE.l .AND. N.LE.NMAX) THEN
DO 20I =1, M
READ (NIN,*) (IM(I,J),J=1,N)
20 CONTINUE
IFAIL = 0

CALL MO1DFF (IM,MMAX,1,M,1,N,’Descending’, IRANK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’Data Ranks’
WRITE (NOUT, *)
DO 40 I =1, M
WRITE (NOUT,99999) (IM(I,J),J=1,N), IRANK(I)
. 40 CONTINUE
END IF
STOP
*
99999 FORMAT (1X,3I7,I11)
END

9.2. Program Data

MO1DFF Example Program Data
12 3

OOV NDWERAEBNDOO
ONWaAaRBRFROVOBNDO
OB NUOONOR N

[NP1692/14] Page 3

MO1DFF MOI — Sorting

9.3. Program Results
MO1DFF Example Program Results

Data Ranks
6 5 4 2
5 2 1 4
2 4 9 10
4 9 6 5
4 9 5 7
4 1 2 8
3 4 1 9
2 4 6 11
1 6 4 12
9 3 2 1
6 2 5 3
4 9 6 6

Page 4 (last) [NP1692/14]

MO1 - Sorting MO1DJF

MOIDJF - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
MO1DJF ranks the columns of a matrix of real numbers in ascending or descending order.
Specification
SUBROUTINE MO1DJF (RM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)
INTEGER LDM, M1, M2, N1, N2, IRANK(N2), IFAIL
real RM(LDM, N2)

CHARACTER*1 ORDER

Description

MO1DJF ranks columns N1 to N2 of a matrix, using the data in rows M1 to M2 of those columns.
The ordering is determined by first ranking the data in row M1, then ranking any tied columns
according to the data in row M1 + 1, and so on up to row M2.

MOIDIJF uses a variant of list-merging, as described by Knuth [1] pp. 165-166. The routine takes
advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal columns preserve their
ordering in the input data.

References

[1] KNUTH, D.E.
The Art of Computer Programming (Vol. 3, Sorting and Searching).
Addison Wesley, 1973

Parameters
RM(LDM,N2) — real array. Input
On entry. rows M1 to M2 of columns N1 to N2 of RM must contain real data to be ranked.

LDM - INTEGER. Input

On entry: the first dimension of the array RM as declared in the (sub)program from which
MO1DJF is called.

Constraint: LDM 2 M2.

M1 - INTEGER. Input
On entry: the index of the first row of RM to be used.
Constraint: M1 > 0,

M2 — INTEGER. Input
On entry: the index of the last row of RM to be used.
Constraint: M2 2 M1.

N1 - INTEGER. Input
On entry: the index of the first column of RM to be ranked.
Constraint: N1 > 0.

[NP1692/14] Page 1

MO1DJF MO1 - Sorting

N2 - INTEGER. Input
On entry: the index of the last column of RM to be ranked.
Constraint: N2 2 NI1.

ORDER - CHARACTER*1. Input

Onentry: if ORDER is 'A' or ‘a', the columns will be ranked in ascending (i.e.
non-decreasing) order; if ORDER is 'D' or 'd', into descending order.

Constraint: ORDER = ‘A", a', D' or 'd'.

IRANK(N2) — INTEGER array. Output

On exit: elements N1 to N2 of IRANK contain the ranks of the corresponding columns of
RM. Note that the ranks are in the range N1 to N2: thus, if the ith column of RM is the first
in the rank order, IRANK (i) is set to N1.

IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M2 < 1,
or N2 <1,
or Ml <1,
or M1 > M2,
or Nl < 1,
or N1 > N2,
or LDM < M2.
IFAIL = 2

On entry, ORDER is not ‘A', a’, 'D' or 'd".
Accuracy

Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n=N2 - NI + 1.

Example
The example program reads a matrix of real numbers and ranks the columns in ascending order.

Page 2 [NP1692/14)

MO1 - Sorting MOIDJF

9.1. Program Text

Note: the listing of the cxample program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1DJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER MMAX, NMAX
PARAMETER (MMAX=20, NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, J, M, N
* .. Local Arrays ..
real RM(MMAX, NMAX)
INTEGER IRANK(NMAX)
* .. External Subroutines ..
EXTERNAL MO1DJF

.. Executable Statements ..
WRITE (NOUT,*) ‘MO1DJF Example Program Results’
* Skip heading in data file
READ (NIN, *)
READ (NIN,*) M, N
IF (M.GE.1l .AND. M.LE.MMAX .AND. N.GE.1l .AND. N.LE.NMAX) THEN
DO 20T =1, M
READ (NIN,*) (RM(I,J),J=1,N)
20 CONTINUE
IFAIL = 0

CALL MO1DJF(RM,MMAX,1,M,1,N, 'Ascending’, IRANK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Data’
WRITE (NOUT, *)
DO 40 I =1, M
WRITE (NOUT, 99999) (RM(I,J),JdJ=1,N)
40 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,*) ’Ranks’
WRITE (NOUT, *)
WRITE (NOUT, 99998) (IRANK(I),I=1,N)
END IF
STOP
*
99999 FORMAT (1X,12F6.1)
99998 FORMAT (1X,12I6)
END

9.2. Program Data
MO1DJF Example Program Data

3 12

5.0 4.0 3.0 2.0 2.0 1.0 9.0 4.0 4.0 2.0 2.0 1.0
3.0 8.0 2.0 5.0 5.0 6.0 9.0 8.0 9.0 5.0 4.0 1.0
9.0 1.0 6.0 1.0 2.0 4.0 8.0 1.0 2.0 2.0 6.0 2.0

[NP1692114] Page 3

MO1DJF

9.3. Program Results
MO1DJF Example Program Results

MO1 - Sorting

Data
5.0 4.0 3.0 2.0 2.0 1.0 9.0 4.0 4.0 2.0 2.0 1.0
3.0 8.0 2.0 5.0 5.0 6.0 9.0 8.0 9.0 5.0 4.0 1.0
9.0 1.0 6.0 1.0 2.0 4.0 8.0 1.0 2.0 2.0 6.0 2.0
Ranks
11 8 7 4 5 3 1
Page 4 (last) [NP1692/14]

MO! - Sorting MO1DKF

MO1DKF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
MO1DKEF ranks the columns of a matrix of integer numbers in ascending or descending order.

Specification
SUBROUTINE MO1DKF (IM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)

INTEGER IM(LDM,N2), LDM, M1, M2, N1, N2, IRANK(N2), IFAIL
CHARACTER*1 ORDER

Description

MOIDKF ranks columns N1 to N2 of a matrix, using the data in rows M1 to M2 of those
columns. The ordering is determined by first ranking the data in row M1, then ranking any tied
columns according to the data in row M1 + 1, and so on up to row M2,

MOIDKEF uses a variant of list-merging, as described by Knuth [1] pp. 165-166. The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory
pass to generate ordered lists of length at least 10. The ranking is stable: equal columns preserve
their ordering in the input data.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 3, Sorting and Searching).
Addison Wesley, 1973

Parameters
IM(LDM,N2) — INTEGER array. Input

Onentry: rtows M1 to M2 of columns N1 to N2 of IM must contain integer data to be
ranked.

LDM - INTEGER. Input

On entry: the first dimension of the array IM as declared in the (sub)program from which
MO1DKEF is called.

Constraint: LDM > M2.

M1 - INTEGER. Input
On entry: the index of the first row of IM to be used.
Constraint: M1 > 0.

M2 — INTEGER. Inpur
On entry: the index of the last row of IM to be used.
Constraint: M2 > MI1.

N1 - INTEGER. Input
On entry: the index of the first column of IM to be ranked.
Constraint: N1 > 0.

[NP1692/14] Page 1

MO1DKF MOI — Sorting

N2 — INTEGER. Input
On entry: the index of the last column of IM to be ranked.
Constraint: N2 2 N1.

ORDER — CHARACTER*1. Input

Onentry: if ORDER is ‘A’ or 'a, the columns will be ranked in ascending (i.e.
non-decreasing) order; if ORDER is 'D' or 'd, into descending order.

Constraint: ORDER = ‘A, 'a', D' or 'd'.

IRANK(N2) — INTEGER array. Output

On exit: elements N1 to N2 of IRANK contain the ranks of the corresponding columns of
IM. Note that the ranks are in the range N1 to N2: thus, if the ith column of IM is the first
in the rank order, IRANK (i) is set to N1.

IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M2 < 1,
or N2 <1,
or Ml < i,
or Ml > M2,
or N1l < 1,
or N1 > N2,
or LDM < M2.
IFAIL = 2

On entry, ORDER is not ‘A', 'a', 'D' or 'd".
Accuracy

Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n=N2- NI + 1. '

Example
The example program reads a matrix of integers and ranks the columns in descending order.

Page 2 [NP1692/14)

MOI - Sorting

9.1. Program Text

MO1DKF

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

40

*

99999

MO1DKF Example Program Text

Mark 14 Revised.

Parameters

INTEGER
PARAMETER
INTEGER
PARAMETER

Local Scalars

INTEGER

.. Local Arrays

INTEGER

..

WRITE (NOUT,*) ’‘MO1DKF Example Program Results’
Skip heading in data file
READ (NIN, *)

.

NAG Copyright 1989.

MMAX, NMAX

(MMAX=20, NMAX=20)

NIN, NOUT

(NIN=5, NOUT=6)

I, IFAIL, J, M, N

IM(MMAX, NMAX),
External Subroutines .
EXTERNAL
Executable Statements

MO1DKF

READ (NIN,*) M, N
IF (M.GE.1 .AND. M.LE.MMAX .AND. N.GE.l .AND. N.LE.NMAX) THEN
DO 20T =1, M

READ (NIN,*) (IM(I,J),J=1,N)

CONTINUE

IFAIL = 0

CALL MOlDKF(IM,MMAX,l,M,l,N,’Descending’,IRANK,IFAIL)

WRITE (NOUT,)

WRITE (NOUT,)

'Data’

WRITE (NOUT, *)
DO 40 I =1, M

WRITE (NOUT,99999) (IM(I,J),J=1,N)

CONTINUE

WRITE (NOUT, *)

WRITE (NOUT, *)

'Ranks’

WRITE (NOUT, *)

WRITE (NOUT,99999) (IRANK(I),I=1,N)

END IF
STOP

FORMAT (1X,1216)

END

9.2. Program Data
MO1DKF Example Program Data

3 12

o wwm
00 W
AN W
B ON
DpDON

Lol]
@ W
00 W
N O
NN
(o)W~ V]
N

9.3. Program Results
MO1DKF Example Program Results

IRANK(NMAX)

Data
5 4 3 2 2 1 9 4 4 2 2 1
3 8 2 5 5 6 9 8 9 5 4 1
9 1 6 1 2 4 8 1 2 2 6 2
Ranks
2 4 6 9 7 11 1 5 3 8 10 12
[NP1692/14] Page 3 (last)

MOI — Sorting MO1DZF

MOIDZF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

2:
3:

Purpose
MO1DZF ranks arbitrary data according to a user-supplied comparison routine.
Specification
SUBROUTINE MO1DZF (COMPAR, M1, M2, IRANK, IFAIL)
INTEGER M1, M2, IRANK(M2), IFAIL
LOGICAL COMPAR
EXTERNAL COMPAR
Description

MO1DZF is a general-purpose routine for ranking arbitrary data. MO1DZF does not access the
data directly; instead it calls a user-supplied routine COMPAR to determine the relative ordering
of any two data items. The data items are identified simply by an integer in the range M1 to M2.

MO1DZF uses a variant of list-merging, as described by Knuth [1] pp. 165-166. The routine takes
advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 3, Sorting and Searching).
Addison Wesley, 1973.

Parameters
COMPAR - LOGICAL FUNCTION, supplied by the user. External Procedure

COMPAR must specify the relative ordering of any two data items; it must return .TRUE.
if item I must come strictly after item J in the rank ordering.

Its specification is:

LOGICAL FUNCTION COMPAR(I, J)

INTEGER I, J
1: I-INTEGER. Inpur
2: J - INTEGER. Input

Onentry: 1 and J identify the data items to be compared.
Constraint: M1 < 1, J £ M2.

COMPAR must be declared as EXTERNAL in the (sub)program from which MO1DZF is
called. Parameters denoted as Input must not be changed by this procedure.

M1 - INTEGER. Input

M2 — INTEGER. Input
On entry: M1 and M2 must specify the range of data items to be ranked, and the range of
ranks to be assigned. Specifically, MO1DZF ranks the data items identified by integers in
the range M1 to M2, and assigns ranks in the range M1 to M2 which are stored in elements
M1 to M2 of IRANK.

Constraint: 0 < M1 < M2.

[NP1692/14] Page 1

Mo01

9.1.

Page 2

DZF MO1 - Sorting

IRANK(M2) — INTEGER array. Output

On exit: elements M1 to M2 of IRANK contain the ranks of the data items M1 to M2. Note
that the ranks are in the range M1 to M2: thus, if item i is first in the rank ordering,
IRANK (i) contains M1.

IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, M2 < 1,
or Ml < 1,
or M1 > M2.
Accuracy

Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to nxlogn, where
n = M2 — Ml + 1; it will usually be dominated by the time taken in COMPAR.

Example

The example program reads records, each of which contains an integer key and a real number.
The program ranks the records first of all in ascending order of the integer key; records with
equal keys are ranked in descending order of the real number if the key is negative, in ascending
order of the real number if the key is positive, and in their original order if the key is zero. After
calling MO1DZF, the program calls MO1ZAF to convert the ranks to indices, and prints the
records in rank order. Note the use of COMMON to communicate the data between the main
program and the function COMPAR.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denot precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1DZF Example Program Text

* Mark 14 Revised. NAG Copyright 1989.

* .. Parameters ..
INTEGER NMAX
PARAMETER (NMAX=100)
INTEGER NIN, NOUT

. PARAMETER (NIN=5, NOUT=6)

* .. Arrays in Common ..
real RV (NMAX)
INTEGER IV(NMAX)

* .. Local Scalars ..
INTEGER I, IFAIL, N

* .. Local Arrays ..
INTEGER IRANK(NMAX)

* .. External Functions ..
LOGICAL COMPAR
EXTERNAL COMPAR

[NP1692/14)

MO1I — Sorting

20

99999

.. External Subroutines ..

EXTERNAL MO1DZF, MO1lzAF

.. Common blocks ..

COMMON RV, IV

.. Executable Statements ..

WRITE (NOUT,*) ’‘MO1DZF Example Program Results’

Skip heading in data file

READ (NIN, *)

READ (NIN,*) N

IF (N.GE.1 .AND. N.LE.NMAX) THEN
READ (NIN,*) (IV(I),RV(I),I=1,N)
IFAIL = 0

CALL MO1DZF(COMPAR, 1,N, IRANK, IFAIL)
CALL MO1ZAF(IRANK,1,N,IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) - Data in sorted order’
WRITE (NOUT, *)
DO 20 I =1, N
WRITE (NOUT, 99999) IV(IRANK(I)), RV(IRANK(I))

CONTINUE
END IF
STOP
FORMAT (1X,I7,F7.1)
END
LOGICAL FUNCTION COMPAR(I,J)
.. Parameters ..
INTEGER NMAX
PARAMETER (NMAX=100)
.. Scalar Arguments ..
INTEGER I, J
.. Arrays in Common ..
real RV (NMAX)
INTEGER IV(NMAX)
.. Common blocks ..
COMMON RV, IV

.. Executable Statements ..
IF (IV(I).NE.IV(J)) THEN
COMPAR = IV(I) .GT. IV(J)
ELSE
IF (IV(I).LT.0) THEN
COMPAR = RV(I) .LT. RV(J)
ELSE IF (IV(I).GT.0) THEN
COMPAR = RV(I) .GT. RV(J)
ELSE
COMPAR = I .LT. J
END IF
END IF
RETURN
END

9.2. Program Data

MO1Dz
12
2

-1

[NP1692/14]

F Example Program Data

Y

[efejoloNoloNeRoloNoYoXo)

HPOMNMOWBINOOR W

MO01DZF

Page 3

MO1DZF MQ0I — Sorting

9.3. Program Results
MO1DZF Example Program Results

Data in sorted order

-2 7.0
-1 6.0
-1 2.0
0 4.0
0 5.0
1 0.0
1 3.0
1 4.0
1 5.0
2 1.0
2 2.0
2 3.0

Page 4 (last) [NP1692/14])

MOI - Sorting MO1EAF

MO1EAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
MOIEAF rearranges a vector of real numbers into the order specified by a vector of ranks.

Specification
SUBROUTINE MOlEAF (RV, M1, M2, IRANK, IFAIL)

INTEGER M1, M2, IRANK(M2), IFAIL
real RV (M2)
Description

MOIEAF is designed to be used typically in conjunction with the MO1D- ranking routines. After
one of the MO1D- routines has been called to determine a vector of ranks, MO1EAF can be called
to rearrange a vector of real numbers into the rank order. If the vector of ranks has been
generated in some other way, then MO1ZBF should be called to check its validity before
MO1EAF is called.

References
None.

Parameters
RV(M2) - real array. Input/ Output
On entry: elements M1 to M2 of RV must contain real values to be rearranged.

On exit: these values are rearranged into rank order. For example, if IRANK (i) = MI, then
the initial value of RV (i) is moved to RV (M1).

M1 — INTEGER. Input
M2 - INTEGER. Input

Onentry: M1 and M2 must specify the range of the ranks supplied in IRANK and the
elements of RV to be rearranged.

Constraint: 0 < M1 < M2,

IRANK(M2) — INTEGER array. Inpur

On entry: elements M1 to M2 of IRANK must contain a permutation of the integers M1 to
M2, which are interpreted as a vector of ranks.

IFAIL — INTEGER. | Input! Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

[NP1692/14] Page 1

MO1EAF MO1 - Sorting

9.1.

Page 2

IFAIL =1
On entry, M2 < 1,
or Ml < 1,
or M1l > M2,
IFAIL = 2

Elements M1 to M2 of IRANK contain a value outside the range M1 to M2.

IFAIL = 3
Elements M1 to M2 of IRANK contain a repeated value.

If IFAIL = 2 or 3, elements M1 to M2 of IRANK do not contain a permutation of the integers
M1 to M2. On exit, the contents of RV may be corrupted. To check the validity of IRANK
without the risk of corrupting RV, use MO1ZBF.

Accuracy
Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to n, where
n=M2- Ml + 1.

Example

The example program reads a matrix of real numbers and rearranges its rows so that the elements
of the kth column are in ascending order. To do this, the program first calls MO1DAF to rank the
elements of the kth column, and then calls MO1EAF to rearrange each column into the order
specified by the ranks. The value of k is read from the data-file.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1lEAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER MMAX, NMAX
PARAMETER (MMAX=20, NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, J, K, M, N
* .. Local Arrays
real RM(MMAX, NMAX)
INTEGER IRANK(MMAX)
* .. External Subroutines ..
EXTERNAL MO1DAF, MO1lEAF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘MOlEAF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) M, N, K
IF (M.GE.l .AND. M.LE.MMAX .AND. N.GE.l .AND. N.LE.NMAX .AND.
+ K.GE.1 .AND. K.LE.N) THEN
DO 20 I =1, M
READ (NIN,*) (RM(I,J),J=1,N)
20 CONTINUE
IFAIL = 0

[NP1692/14)

MO1 — Sorting

40

60

*

99999
99998

MO1EAF

CALL MO1DAF(RM(1,K),1,M,’Ascending’, IRANK, IFAIL)
DO 40 J = 1, N
CALL MO1EAF(RM(1,J),1,M, IRANK, IFAIL)

CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, 99999) ’‘Matrix sorted on column’, K
WRITE (NOUT, *)
DO 60 I =1, M
WRITE (NOUT,99998) (RM(I,J),J=1,N)
CONTINUE

END IF

STOP

FORMAT (1X,A,I3)

FORMAT (1X,3F7.1)

END

9.2. Program Data

MO1lEAF Example Program Data
12 31

OOV RNDWBERBNOO
[eloNoNoNeloNoNoNolloNoNo]

ONhWasBFOOBNDO

[eNoNoNoloNoNolooloNoNe]

AU DNUOMNOR N
[eNeoNoNoloNeoNeoNoloNoNoNe]

9.3. Program Results

MO1lEAF Example Program Results

Matrix sorted on column 1

oo BWNNDR

[eNoloNoleNoNeNoNoNoNo o)

o e s e

WNOUONORFROCOBRDBR®N
[eNeoNolooReoNeoNoloNoNoNe)]
NOBRBRPOAOANMNOOAF OB
[ejeoloNoNoNoNeNoNoNoNe o)

[NP1692/14]

Page 3 (last)

MOl - Sorting MO1EBF

MO1EBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
MOIEBF rearranges a vector of integer numbers into the order specified by a vector of ranks.
Specification
SUBROUTINE MO1EBF (IV, M1, M2, IRANK, IFAIL)
INTEGER IV(M2), M1, M2, IRANK(M2), IFAIL
Description

MOIEBF is designed to be used typically in conjunction with the MO1D- ranking routines. After
one of the MO1D- routines has been called to determine a vector of ranks, MO1EBF can be called
to rearrange a vector of integer numbers into the rank order. If the vector of ranks has been
generated in some other way, then MO1ZBF should be called to check its validity before
MOI1EBEF is called.

References
None.

Parameters
IV(M2) — INTEGER array. Input/ Output
On entry: elements M1 to M2 of IV must contain integer values to be rearranged.

On exit: these values are rearranged into rank order. For example, if IRANK (i) = M1, then
the initial value of IV (i) is moved to IV(M1).

M1 - INTEGER. Input
M2 — INTEGER. Input

On entry: M1 and M2 specify the range of the ranks supplied in IRANK and the elements of
IV to be rearranged.

Constraint: 0 < M1 < M2.

IRANK (M2) — INTEGER array. Input

On entry: elements M1 to M2 of IRANK must contain a permutation of the integers M1 to
M2, which are interpreted as a vector of ranks.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M2 < 1,
or Ml <1,
or M1 > M2.

[NP1692/14) Page 1

MO1EBF MO! — Sorting

9.1.

Page 2

IFAIL = 2
Elements M1 to M2 of IRANK contain a value outside the range M1 to M2,

IFAIL = 3
Elements M1 to M2 of IRANK contain a repeated value.

If IFAIL = 2 or 3, elements M1 to M2 of IRANK do not contain a permutation of the integers
M1 to M2. On exit, the contents of IV may be corrupted. To check the validity of IRANK
without the risk of corrupting IV, use MO1ZBF.

Accuracy
Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to n, where
n=M2-Ml+ 1

Example

The example program reads a matrix of integers and rearranges its rows so that the elements of
the kth column are in ascending order. To do this, the program first calls MO1DBF to rank the
elements of the kth column, and then calls MO1EBF to rearrange each column into the order
specified by the ranks. The value of k is read from the data-file.

Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1lEBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER MMAX, NMAX
PARAMETER (MMAX=20, NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars
INTEGER I, IFAIL, J, K, M, N
* .. Local Arrays ..
INTEGER IM(MMAX,NMAX), IRANK(MMAX)
* .. External Subroutines ..
EXTERNAL MO1DBF, MO1lEBF
* .. Executable Statements ..
WRITE (NOUT,*) ’'MOlEBF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N, K
IF (M.GE.1 .AND. M.LE.MMAX .AND. N.GE.l1 .AND. N.LE.NMAX .AND.
+ K.GE.1 .AND. K.LE.N) THEN
DO 20T =1, M
READ (NIN,*) (IM(I,J),J=1,N)
20 CONTINUE
IFAIL = 0

CaLL MO1DBF(IM(1,K),1,M,’Ascending’, IRANK, IFAIL)

DO 40 J =1, N

[NP1692/14)

MO1 - Sorting MO1EBF

CALL MOlEBF(IM(1,J),1,M, IRANK, IFAIL)

40 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,99999) ’'Matrix sorted on column’, K
WRITE (NOUT, *)
DO 60 I =1, M
WRITE (NOUT,99998) (IM(I,J),J=1,N)
60 CONTINUE
END IF
STOP
*
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,3I7)
END

9.2. Program Data

MO1lEBF Example Program Data
12 31

BOOVRNWBEBBNUO O
ONhWOHR B OOBNDO
NUINBAFRDNUOOAORED

9.3. Program Results
MO1lEBF Example Program Results

Matrix sorted on column 1

oo e WNDNER
WNONORPOOD A
NO_RFRANDOOAFR OO

(NP1692/14) Page 3 (last)

MO1 - Sorting MO1ECF

MO1ECF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
MO1ECF rearranges a vector of character data into the order specified by a vector of ranks.

Specification
SUBROUTINE MO1ECF (CH, M1, M2, IRANK, IFAIL)

INTEGER M1, M2, IRANK(M2), IFAIL
CHARACTER* (*) CH(M2)

Description

MO1ECEF is designed to be used typically in conjunction with the M0O1D- ranking routines. After
one of the MO1D- routines has been called to determine a vector of ranks, MO1ECF can be called
to rearrange a vector of character data into the rank order. If the vector of ranks has been
generated in some other way, then MO1ZBF should be called to check its validity before
MOI1ECEF is called.

References
None.

Parameters

CH(M2) — CHARACTER*(*) array. Input/ Output
On entry: elements M1 to M2 of CH must contain character data to be rearranged.
Constraint: the length of each element of CH must not exceed 255.

On exit: these values are rearranged into rank order. For example, if IRANK (i) = M1, then
the initial value of CH(i) is moved to CH(M1).

M1 — INTEGER. Input

M2 — INTEGER. Input
Onentry. the range of the ranks supplied in IRANK and the elements of CH to be
rearranged.

Constraint: 0 < M1 < M2,

IRANK(M2) — INTEGER array. Input

On entry. elements M1 to M2 of IRANK must contain a permutation of the integers M1 to
M2, which are interpreted as a vector of ranks.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = (unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

[NP1692/14] Page 1

MO1ECF MOI - Sorting

9.1.

Page 2

IFAIL =1
On entry, M2 < 1,
or Ml <1,
or M1 > M2,
IFAIL = 2

On entry, the length of each element of CH exceeds 255.

IFAIL = 3
Elements M1 to M2 of IRANK contain a value outside the range M1 to M2.

IFAIL = 4
Elements M1 to M2 of IRANK contain a repeated value.

If IFAIL = 3 or 4, elements M1 to M2 of IRANK do not contain a permutation of the integers
M1 to M2. On exit, the contents of CH may be corrupted. To check the validity of IRANK
without the risk of corrupting CH, use MO1ZBF.

Accuracy
Not applicable.

Further Comments

The average time taken by the routine is approximately proportional to n, where
n=M2- M1+ 1

Example

The example program reads a file of 12-character records, each of which contains in characters
1 to 6 a name of a NAG routine, and in characters 7 to 12 an integer frequency. The program first
calls MO1DBF to rank the integers in descending order, and then calls MO1ECF to rearrange the
names into the order specified by the ranks.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1lECF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MMAX
PARAMETER (MMAX=100)
* .. Local Scalars ..
INTEGER I, IFAIL, M
* .. Local Arrays ..
INTEGER IFREQ(MMAX), IRANK(MMAX)
CHARACTER* 6 CH(MMAX)
* .. External Subroutines ..
EXTERNAL MO1DBF, MO1lECF
* .. Executable Statements ..
WRITE (NOUT,*) "MOlECF Example Program Results’
* Skip heading in data file

READ (NIN, *)
DO 20 M = 1, MMAX
READ (NIN,99999,END=40) CH(M), IFREQ(M)
20 CONTINUE
40M=M-1
IFAIL = 0

[NP1692/14)

MO1 - Sorting MO1ECF

CALL MO1DBF(IFREQ,1,M,’Descending’, IRANK, IFAIL)
CALL MO1lECF(CH,1,M, IRANK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Names in order of frequency’
WRITE (NOUT, *)
WRITE (NOUT,99998) (CH(I),I=1,M)
STOP
*
99999 FORMAT (A6,I6)
99998 FORMAT (1X,A)
END

9.2. Program Data

MO1lECF Example Program Data
AQ2AAF 289
AQ2ABF 523
AQ2ACF 531
CO2ADF 169
CO2AEF 599
CO5ADF 1351
CO5AGF 240
COS5AJF 136
CO5AVF 211
CO5AXF 183
CO5AZF 2181

9.3. Program Results
MOlECF Example Program Results

Names in order of frequency

CO5AZF
CO5ADF
COZ2AEF
AO02ACF
AQ2ABF
AQ2AAF
CO5AGF
CO5AVF
CO5AXF
CO2ADF
CO5AJF

[NP1692/14] Page 3 (last)

MO1 - Sorting MO1ZAF

MO1ZAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

MO1ZAF inverts a permutation, and hence converts a rank vector to an index vector, or vice
versa.

Specification
SUBROUTINE MO1ZAF (IPERM, M1, M2, IFAIL)
INTEGER IPERM(M2), M1, M2, IFAIL
Description

There are two common ways of describing a permutation using an integer vector IPERM. The
first uses ranks: IPERM (i) holds the position to which the ith data element should be moved in
order to sort the data; in other words its rank in the sorted order. The second uses indices:
IPERM(i) holds the current position of the data element which would occur in ith position in
sorted order. For example, given the values

35 59 29 0S5

to be sorted in ascending order, the ranks would be
3 4 2 1

and the indices would be
4 3 1 2

The MO1D- routines generate ranks, and the MO1E- routines require ranks to be supplied to
specify the re-ordering. However if it is desired simply to refer to the data in sorted order without
actually re-ordering them, indices are more convenient than ranks (see the example in
Section 9).

MO1ZAF can be used to convert ranks to indices, or indices to ranks, as the two permutations are
inverses of one another.

References
None.

Parameters
IPERM(M2) — INTEGER array. Input/ Output

On entry: elements M1 to M2 of IPERM must contain a permutation of the integers M1 to
M2.

On exit: these elements contain the inverse permutation of the integers M1 to M2,

M1 - INTEGER. Input
M2 — INTEGER. Input

On entry: M1 and M2 must specify the range of elements used in the array IPERM and the
range of values in the permutation, as specified under IPERM.

Constraint: 0 < M1 < M2.

IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP1692/14] Page 1

MO1ZAF MO1 - Sorting

6.

9.1.

Page 2

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, M2 < 1,
or Ml < 1,
or M1 > M2.
IFAIL = 2

Elements M1 to M2 of IPERM contain a value outside the range M1 to M2.

IFAIL = 3
Elements M1 to M2 of IPERM contain a repeated value.

If IFAIL = 2 or 3, elements M1 to M2 of IPERM do not contain a permutation of the integers
M1 to M2; on exit these elements are usually corrupted. To check the validity of a permutation
without the risk of corrupting it, use MO1ZBF.

Accuracy
Not applicable.

Further Comments
None.

Example

The example program reads a matrix of real numbers and prints its rows in ascending order as
ranked by MO1DEF. The program first calls MO1DEF to rank the rows, and then calls MO1ZAF
to convert the rank vector to an index vector, which is used to refer to the rows in sorted order.

Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1ZAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER MMAX, NMAX
PARAMETER (MMAX=20, NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, J, M, N
* .. Local Arrays
real RM(MMAX, NMAX)
INTEGER IPERM(MMAX)
* .. External Subroutines
EXTERNAL MO1DEF, MOlZAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'MO1ZAF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N
IF (M.GE.l1 .AND. M.LE.MMAX .AND. N.GE.l .AND. N.LE.NMAX) THEN
DO20I =1, M
READ (NIN,*) (RM(I,J),J=1,N)
20 CONTINUE
IFAIL = 0

[NP1692/14)

MO1I - Sorting MO1ZAF

CALL MO1DEF(RM,MMAX,1,M,1,N,’Ascending’, IPERM, IFAIL)
CALL MOlZAF(IPERM,1,M, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Matrix sorted by rows’
WRITE (NOUT, *)
DO 40 I =1, M
WRITE (NOUT, 99999) (RM(IPERM(I),J),J=1,N)
40 CONTINUE
END IF
STOP
*
99999 FORMAT (1X,3F7.1)
END

9.2. Program Data

MO1lZAF Example Program Data
12 3
6.0

BPOOHNWEB B &NOG
cooocooocooo0o0

ONWOABRROORNOG
coocooooooo00
AUNBARNUGLR A
cooooooo00000

9.3. Program Results
MO1lZAF Example Program Results

Matrix sorted by rows

1.0 6.0 4.0
2.0 4.0 6.0
2.0 4.0 9.0
3.0 4.0 1.0
4.0 1.0 2.0
4.0 9.0 5.0
4.0 9.0 6.0
4.0 9.0 6.0
5.0 2.0 1.0
6.0 2.0 5.0
6.0 5.0 4.0
9.0 3.0 2.0

[NP1692/14] Page 3 (last)

MOI - Sorting MO1ZBF

MO1ZBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
MO1ZBF checks the validity of a permutation.

2. Specification
SUBROUTINE MO1ZBF (IPERM, M1, M2, IFAIL)
INTEGER IPERM(M2), M1, M2, IFAIL

3. Description
MO1ZBF can be used to check the validity of user-supplied ranks or indices, without the ranks or
indices being corrupted.

4. References
None.

5. Parameters
1: IPERM(M2) - INTEGER array. Input

On entry: elements M1 to M2 of IPERM must be set to values which are supposed to be a
permutation of the integers M1 to M2. If they are a valid permutation, the routine exits with

IFAIL = 0.
2: M1 - INTEGER. Input
3: M2 - INTEGER. Input

On entry: the range of elements used in the array IPERM and the range of values in the
permutation, as specified under IPERM.

Constraint: 0 < M1 < M2.

4 IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M2 < 1,
or Ml < 1,
or M1 > M2.
IFAIL = 2

Elements M1 to M2 of IPERM contain a value outside the range M1 to M2.

IFAIL = 3
Elements M1 to M2 of IPERM contain a repeated value.

If IFAIL = 2 or 3, elements M1 to M2 of IPERM do not contain a permutation of the integers
M1 to M2.

[NP1692/14] Page 1

MO1ZBF MOI - Sorting

7.

9.1.

9.2.

Page 2

Accuracy
Not applicable.

Further Comments
None.

Example

The example program reads in a vector of real numbers, and a vector of ranks; it calls MO1ZBF
to check the validity of the ranks before calling MO1EAF to rearrange the real numbers into the
specified order.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1ZBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NMAX
PARAMETER (NMAX=100)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, N
* .. Local Arrays ..
real RV (NMAX)
INTEGER IRANK(NMAX)
* .. External Subroutines ..
EXTERNAL MOlEAF, MO1lZBF
* .. Executable Statements ..
WRITE (NOUT,*) ‘MOlZBF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) N

IF (N.GE.l .AND. N.LE.NMAX) THEN
READ (NIN,*) (RV(I),I=1,N)
READ (NIN,*) (IRANK(I),I=1,N)
IFAIL = 0

CALL MO1ZBF(IRANK,1,N,IFAIL)
CALL MOlEAF(RV,1,N, IRANK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ‘Numbers in rank order’
WRITE (NOUT, *)
WRITE (NOUT,99999) (RV(I),I=1,N)
END IF
STOP
*
99999 FORMAT (1X,10F7.1)
END

Program Data

MO1ZBF Example Program Data
12
5.3 4.6 7.8 1.7 5.3 9.9 3.2 4.3 7.8 4.5 1.2 7.

6
7 6 10 2 8 12 3 4 11 5 1 9

[NP1692/14)

MOI — Sorting MO1ZBF

9.3. Program Results
MO1ZBF Example Program Results

Numbers in rank order

1.2

1.7 3.2 4.3 4.5 4.6 5.3 5.3 7.6 7.8
7.8 9.9

[NP1692/14] Page 3 (last)

MO1 - Sorting MO1ZCF

MO1ZCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
MO1ZCF decomposes a permutation into cycles, as an aid to re-ordering ranked data.
Specification
SUBROUTINE MO1ZCF (IPERM, M1, M2, ICYCL, IFAIL)
INTEGER IPERM(M2), M1, M2, ICYCL(M2), IFAIL
Description

MO1ZCF is provided as an aid to re-ordering arbitrary data structures without using additional
storage. However users should consider carefully whether it is necessary to rearrange their data,
or whether it would be simpler and more efficient to refer to the data in sorted order using an
index vector, or to create a copy of the data in sorted order.

To rearrange data into a different order without using additional storage, the simplest method is
to decompose the permutation which specifies the new order, into cycles; and then to do a cyclic
permutation of the data items in each cycle. (This is the method used by the MO1E- re-ordering
routines.) Given a vector IRANK which specifies the ranks of the data (as generated by the
MOID- routines), MO1ZCF generates a new vector ICYCL, in which the permutation is
represented in its component cycles, with the first element of each cycle negated. For example,
the permutation

S 7 4 2 1 6 3

is composed of the cycles

(I 5@ 7 3 4)(6)
and the vector ICYCL generated by MO1ZCF contains

-1 5 -2 7 3 4 -6
In order to rearrange the data according to the specified ranks:

item 6 must be left in place;

items 1 and 5 must be interchanged;

items 4, 2, 7 and 3 must be moved one place round the cycle.
The complete rearrangement can be achieved by the following code:

DO 10 K = M1, M2
I = ICYCL(K)
IF (I.LT.0) THEN
J = -1
ELSE
[swap items I and J]
ENDIF
10 CONTINUE

References
None.

Parameters
IPERM(M2) — INTEGER array. Input

Onentry: elements M1 to M2 of IPERM must contain a permutation of the integers M1 to
M2.

[NP1692/14] Page 1

MO1ZCF MOI - Sorting

Page 2

M1 - INTEGER. Input
M2 — INTEGER. Input

On entry: M1 and M2 must specify the range of elements used in the array IPERM and the
range of values in the permutation, as specified under [PERM.

Constraint: 0 < M1 £ M2.

ICYCL(M2) — INTEGER array. Output

On exit: elements M1 to M2 of ICYCL contain a representation of the permutation as a list
of cycles, with the first integer in each cycle negated. (See Section 3.)

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M2 < 1,
or Ml < 1,
or M1 > M2.
IFAIL = 2

Elements M1 to M2 of IPERM contain a value outside the range M1 to M2.

IFAIL = 3
Elements M1 to M2 of IPERM contain a repeated value.

If IFAIL = 2 or 3, elements M1 to M2 of IPERM do not contain a permutation of the integers
M1 to M2.

Accuracy
Not applicable.

Further Comments
None.

Example

The example program reads a matrix of real numbers and rearranges its columns so that the
elements of the /th row are in ascending order. To do this, the program first calls MO1DJF to rank
the elements of the /th row, and then calls MO1ZCF to decompose the rank vector into cycles. It
then rearranges the columns using the framework of code suggested in Section 3. The value of /
is read from the data-file.

[NP1692/14)

MO! - Sorting MO1ZCF

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* MO1lZCF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER MMAX, NMAX
PARAMETER (MMAX=20, NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real T
INTEGER I, IFAIL, II, J, K, L, M, N
* .. Local Arrays ..
real RM(MMAX, NMAX)
INTEGER ICYCL(NMAX), IRANK(NMAX)
* .. External Subroutines ..
EXTERNAL MO1DJF, MO1lZCF
* .. Executable Statements ..
WRITE (NOUT,*) ’'MO1ZCF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N, L
IF (M.GE.l1 .AND. M.LE.MMAX .AND. N.GE.l1 .AND. N.LE.NMAX .AND.
+ L.GE.1 .AND. L.LE.M) THEN
DO20I =1, M
READ (NIN,*) (RM(I,J),J=1,N)
20 CONTINUE
IFAIL = 0

CALL MO1DJF(RM,MMAX,L,L,1,N, "Ascending’, IRANK, IFAIL)
CALL MO1lzCF(IRANK,1,N, ICYCL, IFAIL)

DO 60 K =1, N
I = ICYCL(K)
IF (I.LT.0) THEN

J=-I
ELSE
* Swap columns I and J

DO 40 IT =1, M
T = RM(II,J)

RM(II,J) = RM(II,I)
RM(II,I) = T
40 CONTINUE
END IF

60 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, 99999) ’‘Matrix sorted on row’, L
WRITE (NOUT, *)
DO 80 I =1, M
WRITE (NOUT,99998) (RM(I,J),J=1,N)
80 CONTINUE
END IF
STOP
*
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,12F6.1)
END

9.2. Program Data
MO1ZCF Example Program Data

312 3

5.0 4.0 3.0 2.0 2.0 1.0 9.0 4.0 4.0 2.0 2.0 1.0
3.0 8.0 2.0 5.0 5.0 6.0 9.0 8.0 9.0 5.0 4.0 1.0
9.0 1.0 6.0 1.0 2.0 4.0 8.0 1.0 2.0 2.0 6.0 2.0

[NP1692/14] Page 3

MO1ZCF MO1 - Sorting

9.3. Program Results
MO1ZCF Example Program Results

Matrix sorted on row 3

4.0 2.0 4.0 2.0 4.0 2.0 1.0 1.0 3.0 2.0 9.0 5.0
8.0 5.0 8.0 5.0 9.0 5.0 1.0 6.0 2.0 4.0 9.0 3.0
1.0 1.0 1.0 2.0 2.0 2.0 2.0 4.0 6.0 6.0 8.0 9.0

[NP1692/14]

Page 4 (last)

Chapter P01 — Error Trapping

Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of
Name Introduction Purpose

PO1ABF 12 Return value of error indicator/terminate with error message

P01 - Error Trapping Introduction - P01

Chapter P01

Error Trapping

Contents

1 Scope of the Chapter 2

2 Background to the Problems 2
2.1 Errors, Failure and Warning Conditions 2
2.9 The IFAIL Parameter o o v v o i e e e e e e e e e e e e e e 2
2.3 Hard Faill Option oo 2
2.4 Soft Fail Option 3
2.5 Historical NOte o o e e e e e 3

3 Recommendations on Choice and Use of Available Routines 4

[NP3086/18] PO01.1

Introduction - P01 P01 - Error Trapping

1 Scope of the Chapter

This chapter is concerned with the trapping of error, failure or warning conditions by NAG Library
routines. This introduction document describes the commonly occurring parameter IFAIL.

2 Background to the Problems
2.1 Errors, Failure and Warning Conditions

The error, failure or warning conditions considered here are those that can be detected by explicit coding
in a Library routine. Such conditions must be anticipated by the author of the routine. They should not
be confused with run-time errors detected by the compiling system, e.g. detection of overflow or failure
to assign an initial value to a variable.

In the rest of this document we use the word ‘error’ to cover all types of error, failure or warning conditions
detected by the routine. They fall roughly into three classes.

(i) On entry to the routine the value of a parameter is out of range. This means that it is not useful,
or perhaps even meaningful, to begin computation.

(i) During computation the routine decides that it cannot yield the desired results, and indicates a
failure condition. For example, a matrix inversion routine will indicate a failure condition if it
considers that the matrix is singular and so cannot be inverted.

(iii) Although the routine completes the computation and returns results, it cannot guarantee that the
results are completely reliable; it therefore returns a warning. For example, an optimization routine
may return a warning if it cannot guarantee that it has found a local minimum.

All three classes of errors are handled in the same way by the Library.

Each error which can be detected by a Library routine is associated with a number. These numbers,
with explanations of the errors, are listed in Section 6 (Error Indicators and Warnings) in the routine
document. Unless the document specifically states to the contrary, the user should not assume that the
routine necessarily tests for the occurrence of the errors in their order of error number, i.e., the detection
of an error does not imply that other errors have or have not been detected.

2.2 The IFAIL Parameter

Most of the NAG Library routines which can be called directly by the user have a parameter called IFAIL.
This parameter is concerned with the NAG Library error trapping mechanism (and, for some routines,
with controlling the output of error messages and advisory messages).

IFAIL has two purposes:

(i) to allow the user to specify what action the Library routine should take if an error is detected,;
(ii) to inform the user of the outcome of the call of the routine.

For purpose (i), the user must assign a value to IFAIL before the call to the Library routine. Since IFAIL
is reset by the routine for purpose (ii), the parameter must be the name of a variable, not a literal or
constant.

The value assigned to IFAIL before entry should be either O (hard fail option), or 1 or -1 (soft fail
option). If after completing its computation the routine has not detected an error, IFAIL is reset to 0 to
indicate a successful call. Control returns to the calling program in the normal way. If the routine does
detect an error, its action depends on whether the hard or soft fail option was chosen.

2.3 Hard Fail Option

If the user sets IFAIL to 0 before callinig the Library routine, execution of the program will terminate if
the routine detects an error. Before the program is stopped, this error message is output:

** ABNORMAL EXIT from NAG Library routine XXXXXX: IFAIL = n

** NAG hard failure - execution terminated

P01.2 [NP3086/18]

P01 - Error Trapping Introduction - P01

where XXXXXX is the routine name, and n is the number associated with the detected error. An explanation
of error number n is given in Section 6 of the routine document XXXXXX.

In addition, most routines output explanatory error messages immediately before the standard
termination message shown above.

In some implementations of the NAG Library, when the hard fail option is invoked, the error message
may be accompanied by dump or tracing information. The output channel used for the output of the
error message is determined by X04AAF.

The hard fail option should be selected if the user is in any doubt about continuing the execution of the
program after an unsuccessful call to a NAG Library routine.

2.4 Soft Fail Option
To select this option, the user must set IFAIL to 1 or —1 before calling the Library routine.

If the routine detects an error, IFAIL is reset to the associated error number; further computation within
the routine is suspended and control returns to the calling program.

If the user sets IFAIL to 1, then no error message is output (silent exit).

If the user sets IFAIL to —1 (noisy exit), then before control is returned to the calling program, the
following error message is output:

** ABNORMAL EXIT from NAG Library routine XXXXXX: IFAIL = n

** NAG soft failure - control returned

In addition, most routines output explanatory error messages immediately before the above standard
message.

It is most important to test the value of IFAIL on exit if the soft fail option is selected. A non-zero
exit value of IFAIL implies that the call was not successful so it is imperative that the user’s program
be coded to take appropriate action. That action may simply be to print IFAIL with an explanatory
caption and then terminate the program. Many of the example programs in Section 9 of the routine
documents have IFAIL-exit tests of this form. In the more ambitious case, where the user wishes his or
her program to continue, it is essential that the program can branch to a point at which it is sensible to
resume computation.

The soft fail option puts the onus on the user to handle any errors detected by the Library routine. With
the proviso that the user is able to implement it properly, it is clearly more flexible than the hard fail
option since it allows computation to continue in the case of errors. In particular there are at least two
cases where its flexibility is useful:

(i) where additional information about the error or the progress of computation is returned via some
of the other parameters;

(ii) exceptionally, certain routine documents may advise further calls with IFAIL left with its value on
exit after the first call of the routine. In such cases the user should not reset the IFAIL-exit value
between calls;

(iii) in some routines, ‘partial’ success can be achieved, e.g. a probable solution found but not all
conditions fully satisfied, so the routine returns a warning. On the basis of the advice in Section
6 and elsewhere in the routine document, the user may decide that this partially successful call is
adequate for certain purposes.

2.5 Historical Note

The error handling mechanism described above was introduced into the NAG Library at Mark 12. It
supersedes the earlier mechanism which for most routines allowed IFAIL to be set by the user to 0 or
1 only. The new mechanism is compatible with the old except that the details of the messages output
on hard failure have changed. The new mechanism also allows the user to set IFAIL to —1 (soft failure,
noisy exit).

[NP3086/18] P01.3

Introduction - P01 P01 - Error Trapping

A few routines (introduced mainly at Marks 7 and 8) use IFAIL in a different way to control the output
of error messages, and also of advisory messages (see Chapter X04). In those routines IFAIL is regarded
as a decimal integer whose least significant digits are denoted ba with the following significance:

a = 0: hard failure a = 1: soft failure
b = 0: silent exit b = 1: noisy exit

Details are given in the documents of the relevant routines; for those routines this alternative use of
IFAIL remains valid.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.
To implement the error mechanism described in Section 2, NAG Library routines call PO1ABF.

This routine is therefore primarily of interest only to writers of NAG Fortran Library software. It is
included in the general user manual for completeness. Users need not know how to call PO1ABF directly

though they may be aware of its existence.

P01.4 (last) [NP3086/18]

PO1 — Error Trapping PO1ABF

PO1ABF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

PO1ABF either returns the value of IERROR (soft failure), or terminates execution of the
program (hard failure). Diagnostic messages may be output.

Specification
INTEGER FUNCTION POlABF (IFAIL, IERROR, SRNAME, NREC, REC)
INTEGER IFAIL, IERROR, NREC

CHARACTER* (*) SRNAME, REC(*)

Description

PO1ABF is intended for use by other NAG Fortran Library routines. If a routine does not
terminate normally, PO1ABF is called to provide uniform handling of error or warning
conditions. Associated with abnormal termination are error or warning indicators, which are
listed in Section 6 of the routine documents. PO1ABEF is called with the indicator value stored in
IERROR and the name of the calling library routine in SRNAME. Messages relating to the
reason for termination may optionally be supplied in the array REC. The action of PO1ABF then
depends on the entry values of IFAIL and IERROR.

If IERROR = 0 (successful termination), the value 0 is simply returned through the routine
name. No message is output.

Non-zero values of [ERROR indicate abnormal termination and the action taken depends on the
value of IFAIL.

If IFAIL = -1 or 1, the value of IERROR is returned through the routine name (soft failure); if
IFAIL = 0, then execution of the user’s program is terminated without returning to the calling
routine (hard failure).

If IFAIL = 1, then no output occurs from PO1ABF (silent exit). If IFAIL = O or -1, then
PO1ABF writes messages to the unit number specified by a call to X04AAF (noisy exit). Any
messages supplied by the calling routine in the array REC are output first, followed by a record
of the form

** ABNORMAL EXIT from NAG Fortran Library routine XXXXXX: IFAIL = n

where XXXXXX is the value of SRNAME and n is the value of IERROR. For soft failure this
is followed by the record

** NAG soft failure: control returned
and for hard failure by
** NAG hard failure: execution terminated

See also Section 8 concerning compatibility with error-handling mechanisms in the NAG Fortran
Library before Mark 12.

References
None.

Parameters
IFAIL - INTEGER. Input
On entry: the value of IFAIL determines the action of the routine as described in Section 3.

IERROR - INTEGER. Input

Onentry: the value of the error or warning indicator. Unless IFAIL = 0, the value of
IERROR is returned through the routine name.

[NP1692/14] Page 1

PO1ABF P01 - Error Trapping

9.1.

Page 2

SRNAME — CHARACTER*(*). Input

On entry: the name of the routine which has called PO1ABF. If this is a NAG Fortran
Library routine, the length of SRNAME is always 6.

NREC - INTEGER. Input
On entry: the number of elements (records) in the array REC.
Constraint: NREC 2 0.

REC(*) — CHARACTER*(*) array. Input
Note: the dimension of REC must be greater than or equal to max(1,NREC).

On entry: an internal file. Unless IFAIL = 1, or NREC = 0, the first NREC elements of
REC are written to the unit determined by X04AAF. If NREC = 0, then REC is not
referenced.

Error Indicators and Warnings
None.

Accuracy
Not applicable.

Further Comments

PO1ABF was introduced at Mark 12 of the NAG Fortran Library, to supersede the earlier
error-handling PO1AAF. PO1ABF is compatible with POIAAF except that the details of the
messages printed on hard failure have changed.

Compatibility includes even those routines (introduced mainly at Marks 7 and 8) which used
IFAIL in a different way to control the output of messages. In those routines IFAIL is regarded
as a decimal integer whose least significant two digits are denoted ba with the following
meanings:

a = 0: hard failure a = 1: soft failure

b = 0: silent exit b = 1: noisy exit

However this aspect of PO1ABF will not, and should not, be used in future.

Example

In the simple program below, the subroutine MYSQRT uses PO1ABF in the way in which it is
usually employed by a NAG Fortran Library routine. Within MYSQRT, error number 1 is
associated with an attempt to find a real square root of a negative number. The first call illustrates
soft failure with a silent exit, the second call soft failure with a noisy exit and the third call hard
failure. Output from the main program is all in upper case characters; output from PO1ABF uses
lower case characters.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details, Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* PO1lABF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real Y
INTEGER IFAIL
* .. External Subroutines ..
EXTERNAL MYSQRT

[NP1692114)

P01 — Error Trapping PO1ABF

9.2.

.. Executable Statements ..

WRITE (NOUT,*) ’‘POlABF Example Program Results’

WRITE (NOUT, *)

WRITE (NOUT, x)
+’8Soft failure, silent exit - message output from the main program’
IFAIL = 1

CALL MYSQRT(-1.0e0,Y,IFAIL)

IF (IFAIL.EQ.O0) THEN

WRITE (NOUT,99999) Y

ELSE

WRITE (NOUT, *)
+ 'Attempt to take the square root of a negative number’
END IF

WRITE (NOUT, *)
WRITE (NOUT,*) ‘Soft failure, noisy exit’
IFAIL = -1
CALL MYSQRT(—-2.0e0,Y,IFAIL)
IF (IFAIL.EQ.0) THEN
WRITE (NOUT,99999) Y
END IF

WRITE (NOUT, *)

WRITE (NOUT,*) ’‘Hard failure, noisy exit’
IFAIL = 0

CALL MYSQRT(—-3.0e0,Y,IFAIL)

WRITE (NOUT,99999) Y

STOP

FORMAT (1X,F10.4)
END

SUBROUTINE MYSQRT(X,Y,IFAIL)
Simple routine to compute square root

.. Parameters ..
CHARACTER*6 SRNAME
PARAMETER (SRNAME='MYSQRT"’)
.. Scalar Arguments ..
real X, Y
INTEGER IFAIL
.. Local Arrays ..
CHARACTER*51 REC(1)
.. External Functions ..
INTEGER PO1lABF
EXTERNAL PO1ABF
.. Intrinsic Functions ..
INTRINSIC SQRT

.. Executable Statements ..
IF (X.GE.0.0e0) THEN
= SQRT(X)
IFAIL = 0

ELSE
WRITE (REC,99999) ’** Attempt to take the square root of ’, X
IFAIL = POlABF(IFAIL,1,SRNAME,1l,REC)
END IF
RETURN
*
99999 FORMAT (1X,A,1P,el2.5)
END
Program Data

None.

[NP1692/14]

Page 3

PO1ABF POl — Error Trapping

9.3. Program Results
POlABF Example Program Results

Soft failure, silent exit — message output from the main program
Attempt to take the square root of a negative number

Soft failure, noisy exit

% Attempt to take the square root of -2.00000E+00

** ABNORMAL EXIT from NAG Library routine MYSQRT: IFAIL = 1
** NAG soft failure — control returned

Hard failure, noisy exit

** Attempt to take the square root of -3.00000E+00

** ABNORMAL EXIT from NAG Library routine MYSQRT: IFAIL = 1
** NAG hard failure — execution terminated

Page 4 (last) [NP1692/14]

Chapter S — Approximations of Special Functions

Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

SO1BAF 14 In(1+ z)

SO1EAF 14 Complex exponential, e*

SO7TAAF 1 tanz

SO9AAF 1 arcsin r

SO9ABF 3 arccos r

S10AAF 3 tanh z

S10ABF 4 sinhz

S10ACF 4 cosh

S11AAF 4 arctanhz

S11ABF 4 arcsinhz

S11ACF 4 arccoshz

S13AAF 1 Exponential integral E,(z)

S13ACF 2 Cosine integral Ci(z)

S13ADF 5 Sine integral Si(z)

S14AAF 1 Gamma function

S14ABF 8 Log Gamma function

S14ACF 14 P(z) —Inz

S14ADF 14 Scaled derivatives of ¥(x)

S14BAF 14 Incomplete gamma functions P(a,z) and Q(a,)

S15ABF 3 Cumulative normal distribution function P(z)

S15ACF 4 Complement of cumulative normal distribution function Q(z)
S15ADF 4 Complement of error function erfc(x)

S15AEF 4 Error function erf(z)

S15AFF 7 Dawson’s integral

S15DDF 14 Scaled complex complement of error function, exp(—z?)erfc(—iz)
S17ACF 1 Bessel function Yy(z)

S1TADF 1 Bessel function Y;(z)

S1TAEF 5 Bessel function Jy(z)

S1TAFF 5 Bessel function J;(z)

S17AGF 8 Airy function Ai(z)

S17AHF 8 Airy function Bi(z)

S17AJF 8 Airy function Ai'(z)

S17AKF 8 Airy function Bi'(z)

S17DCF 13 Bessel functions Y, ,(z), real a > 0, complex z, v =10,1,2,...
S17DEF 13 Bessel functions J, , ,(2), real a > 0, complex z, » =0,1,2, ...
S17DGF 13 Airy functions Ai(z) and Ai'(z), complex z

S17DHF 13 Airy functions Bi(z) and Bi’(z), complex z

S17DLF 13 Hankel functions Hﬁ"_&a(z), j=1,2,reala >0, complex 2z, v =0,1,2,...
S18ACF 1 Modified Bessel function K(z)

S18ADF 1 Modified Bessel function K,(z)

S18AEF 5 Modified Bessel function I(z)

S18AFF 5 Modified Bessel function I;(z)

S18CCF 10 Modified Bessel function e” Ky(x)

S18CDF 10 Modified Bessel function e” K, (z)

S18CEF 10 Modified Bessel function e~!*!I,(z)

S18CFF 10 Modified Bessel function e~ !#!1,(z)

S18DCF 13 Modified Bessel functions K, ,(z), real @ > 0, complex z, » =0, 1,2,. ..
S18DEF 13 Modified Bessel functions I, ,(z), real @ > 0, complex z, » =0, 1,2,. ..

S19AAF 11 Kelvin function ber z

S19ABF
S19ACF
S19ADF
S20ACF
S20ADF
S21BAF
S21BBF
S21BCF
S21BDF
S21CAF

11
11
11

o0 00 00 0o Ot

—
o

Kelvin function bei z
Kelvin function ker z
Kelvin function kel z
Fresnel integral S(z)

Fresnel integral C(z)
Degenerate symmetrised elliptic integral of 1st kind R (z,y)

Symmetrised elliptic integral of 1st kind Rp(z,y, 2)
Symmetrised elliptic integral of 2nd kind Rp(z,y,2)
Symmetrised elliptic integral of 3rd kind R;(z,y,2,7)
Jacobian elliptic functions sn, cn and dn

S - Approzimations of Special Functions Introduction — S

Chapter S

Approximations of Special Functions

Contents
1 Scope of the Chapter

2 Background to the Problems
2.1 Functions of a Single Real Argument
2.2 Approximations to Elliptic Integrals
2.3 Bessel and Airy Functions of a Complex Argument

3 Recommendations on Choice and Use of Available Routines
3.1 Elliptic Integrals
3.2 Bessel and Airy Functions

4 Index

5 References

[NP3086/18]

S.1

Introduction - S S - Approzimations of Special Functions

1 Scope of the Chapter

This chapter is concerned with the provision of some commonly occurring physical and mathematical
functions.

2 Background to the Problems

The majority of the routines in this chapter approximate real-valued functions of a single real argument,
and the techniques involved are described in Section 2.1. In addition the chapter contains routines for
elliptic integrals (see Section 2.2), Bessel and Airy functions of a complex argument (see Section 2.3),
exponential of a complex argument, and complementary error function of a complex argument.

2.1 Functions of a Single Real Argument

Most of the routines for functions of a single real argument have been based on truncated Chebyshev
expansions. This method of approximation was adopted as a compromise between the conflicting
requirements of efficiency and ease of implementation on many different machine ranges. For details
of the reasons behind this choice and the production and testing procedures followed in constructing this
chapter see Schonfelder [7].

Basically, if the function to be approximated is f(z), then for z € [a,b] an approximation of the form

o) = 9(=) Y C.T.()

r=0

is used (Z/ denotes, according to the usual convention, a summation in which the first term is halved),
where g(z) is some suitable auxiliary function which extracts any singularities, asymptotes and, if possible,
zeros of the function in the range in question and t = t(z) is a mapping of the general range [a, b] to the
specific range [—1,+1] required by the Chebyshev polynomials, T,(t). For a detailed description of the
properties of the Chebyshev polynomials see Clenshaw [5] and Fox and Parker [6].

The essential property of these polynomials for the purposes of function approximation is that 7, (t)
oscillates between +1 and it takes its extreme values n + 1 times in the interval [—1,+1]. Therefore,
provided the coefficients C, decrease in magnitude sufficiently rapidly the error made by truncating the
Chebyshev expansion after n terms is approximately given by

E(t) ~ C,T,(?).

That is, the error oscillates between +C,, and takes its extreme value n+1 times in the interval in question.
Now this is just the condition that the approximation be a mini-max representation, one which minimizes
the maximum error. By suitable choice of the interval, [a, b], the auxiliary function, g(z), and the mapping
of the independent variable, t(z), it is almost always possible to obtain a Chebyshev expansion with rapid
convergence and hence truncations that provide near mini-max polynomial approximations to the required
function. The difference between the true mini-max polynomial and the truncated Chebyshev expansion
is seldom sufficiently great enough to be of significance.

The evaluation of the Chebyshev expansions follows one of two methods. The first and most efficient,
and hence the most commonly used, works with the equivalent simple polynomial. The second method,
which is used on the few occasions when the first method proves to be unstable, is based directly on the
truncated Chebyshev series, and uses backward recursion to evaluate the sum. For the first method, a
suitably truncated Chebyshev expansion (truncation is chosen so that the error is less than the machine
precision) is converted to the equivalent simple polynomial. That is, we evaluate the set of coeflicients
b, such that

n—-1 n-1
yt) =S bt =3 C.T.().
r=0

r=0

The polynomial can then be evaluated by the efficient Horner’s method of nested multiplications,

y(t) = (b +t(by +t(by+ ... t(b,_o +1b,_1))) .-)

5.2 [NP3086/18]

S - Approzimations of Special Functions Introduction — S

This method of evaluation results in efficient routines but for some expansions there is considerable loss
of accuracy due to cancellation effects. In these cases the second method is used. It is well known that if

booy =Cha
bﬂ—2 = 2tbn__1 +C —92
b, =b,—b,+C; j=n-3n—4,..,0

then ,
3" CT, (1) = 3(bo = by)

r=0

and this is always stable. This method is most efficiently implemented by using three variables cyclically
and explicitly constructing the recursion.

That 1s,

a = C,,
B = 2ta+C,_,
y = 2f-a+C,_3
a = 22y-B+C,_,
B = 22ta—-v+C,_5

saya = 22uy-p8+0C,
B = 2A2a—7v+C,

yt) = tB-a+3GC

The auxiliary functions used are normally functions compounded of simple polynomial (usually linear)
factors extracting zeros, and the primary compiler-provided functions, sin, cos, In, exp, sqrt, which
extract singularities and/or asymptotes or in some cases basic oscillatory behaviour, leaving a smooth
well-behaved function to be approximated by the Chebyshev expansion which can therefore be rapidly
convergent.

The mappings of [a, b] to [-1,+1] used range from simple linear mappings to the case when b is infinite,
and considerable improvement in convergence can be obtained by use of a bilinear form of mapping.
Another common form of mapping is used when the function is even; that is, it involves only even powers
in its expansion. In this case an approximation over the whole interval [—a, a] can be provided using a
mappingt = 2(z/ a)27 —1. This embodies the evenness property but the expansion in t involves all powers
and hence removes the necessity of working with an expansion with half its coefficients zero.

For many of the routines an analysis of the error in principle is given, namely, if E and V are the absolute
errors in function and argument and ¢ and é are the corresponding relative errors, then

E =~ |f(2)V

E ~ |zf'(z)]é
zf'(z)

€ @) 6.

If we ignore errors that arise in the argument of the function by propagation of data errors etc., and
consider only those errors that result from the fact that a real number is being represented in the

[NP3086/18] S.3

Introduction — S : - S - Approzimations of Special Functions

computer in floating-point form with finite precision, then § is bounded and this bound is independent
of the magnitude of z. For example, on an 11-digit machine

|6] < 10711

(This of course implies that the absolute error V = z6 is also bounded but the bound is now dependent
on z.) However, because of this the last two relations above are probably of more interest. If possible the
relative error propagation is discussed; that is, the behaviour of the error amplification factor lzf'(z)/f(z)]
is described, but in some cases, such as near zeros of the function which cannot be extracted explicitly,
absolute error in the result is the quantity of significance and here the factor |zf'(z)| is described. In
general, testing of the functions has shown that their error behaviour follows fairly well these theoretical
error behaviours. In regions where the error amplification factors are less than or of the order of one,
the errors are slightly larger than the above predictions. The errors are here limited largely by the finite
precision of arithmetic in the machine, but ¢ is normally no more than a few times greater than the bound
on §. In regions where the amplification factors are large, of order ten or greater, the theoretical analysis
gives a good measure of the accuracy obtainable.

It should be noted that the definitions and notations used for the functions in this chapter are all taken
from Abramowitz and Stegun [1]. Users are strongly recommended to consult this book for details before
using the routines in this chapter.

2.2 Approximations to Elliptic Integrals

The functions provided here are symmetrised variants of the classic elliptic integrals. These alternative
definitions have been suggested by Carlson (see [2], [3] and [4]) and he also developed the basic algorithms
used in this chapter.

The standard integral of the first kind is represented by

1 [dt
Rl =3 | SErereTT

where z,y, z > 0 and at most one may be equal to zero.

The normalisation factor, %, is chosen so as to make
Rp(z,z,2) = 1/Vx.

If any two of the variables are equal, Ry degenerates into the second function

1 [dt
where the argument restrictions are now ¢ > 0 and y # 0.

This function is related to the logarithm or inverse hyperbolic functions if 0 < y < z, and to the inverse
circular functions if 0 < z < y.

The integrals of the second kind are defined by

_§ o0 dt
Rote) =3 |, T

with z > 0, £ > 0 and y > 0, but only one of x or y may be zero.

The function is a degenerate special case of the integral of the third kind

3 § 0o dt
R;(z,y,2,p) = 2/0 ViE+)+ y)(E+ 2)(t+ p)

with p # 0 and z,y,z > 0 with at most one equality holding. Thus Rp(z,y,2) = R;(z,y,2,2). The
normalisation of both these functions is chosen so that

Rp(z,z,z) = Ry(z,z,2,7) = 1/(zV/T).

S.4 [NP3086/18]

S - Approzimations of Special Functions Introduction - §

The algorithms used for all these functions are based on duplication theorems. These allow a recursion
system to be established which constructs a new set of arguments from the old using a combination of
arithmetic and geometric means. The value of the function at the original arguments can then be simply
related to the value at the new arguments. These recursive reductions are used until the arguments differ
from the mean by an amount small enough for a Taylor series about the mean to give sufficient accuracy
when retaining terms of order less than six. Each step of the recurrences reduces the difference from
the mean by a factor of four, and as the truncation error is of order six, the truncation error goes like
(4096)~", where n is the number of iterations.

The above forms can be related to the more traditional canonical forms (see Abramowitz and Stegun (1],
17.2).

If we write ¢ = cos? ¢, r=1— m.sin’¢, s=1+ n.sin? ¢, where 0 < ¢ < %ﬂ’, we have:

the elliptic integral of the first kind:
sin ¢
F(¢|m) =/ (1 —t2)"Y2(1 — mt?)~Y/%dt = sin ¢.Rp(q, 7, 1);
0

the elliptic integral of the second kind:

sin ¢
E(¢|m) /0 (1- t2)‘1/2(1 - th)I/Zdt

= sin¢.Rp(q,7, 1) — %m. sin® ¢.Rp(q,7,1)

the elliptic integral of the third kind:

sin ¢
1I(n; ¢|m) /0 (1=t%)72(1 - mt?)~12(1 + nt?) M dt

sin¢.Rp(q,7,1) — in.sin® ¢.R;(q, 7, 1,5).

Also the complete elliptic integral of the first kind:
x/2
K(m) = / (1 — m.sin?0)~'/2d§ = Rp(0,1 — m,1);
0
the complete elliptic integral of the second kind:

/2
E(m) = /0 (1 - m.sin?0)"/2d6 = Rp(0,1— m,1) — m.Rp(0,1 — m, 1).

2.3 Bessel and Airy Functions of a Complex Argument

The routines for Bessel and Airy functions of a real argument are based on Chebyshev expansions,
as described in Section 2.1. The routines for functions of a complex argument, however, use different
methods. These routines relate all functions to the modified Bessel functions I,,(z) and K, (z) computed in
the right-half complex plane, including their analytic continuations. I, and K, are computed by different
methods according to the values of z and v. The methods include power series, asymptotic expansions
and Wronskian evaluations. The relations between functions are based on well known formulae (see
Abramowitz and Stegun [1]).

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Elliptic Integrals

IMPORTANT ADVICE: users who encounter elliptic integrals in the course of their work are strongly
recommended to look at transforming their analysis directly to one of the Carlson forms, rather than to

[NP3086,/18] S.5

Introduction — S : S - Approzimations of Special Functions

the traditional canonical Legendre forms. In general, the extra symmetry of the Carlson forms is likely
to simplify the analysis, and these symmetric forms are much more stable to calculate.

The routine S21BAF for R is largely included as an auxiliary to the other routines for elliptic integrals.
This integral essentially calculates elementary functions, e.g.

(z—1).R¢ ((1;“”)2,35), z > 0;

arcsinz = z.Ro(1-2%1), [z| <15
arcsinhz =z.Ro(1+ z2,1), etc.

Inz

In general this method of calculating these elementary functions is not recommended as there are usually
much more efficient specific routines availablein the Library. However, S21BATF may be used, for example,
to compute Inz/(z — 1) when z is close to 1, without the loss of significant figures that occurs when Inz
and z — 1 are computed separately.

3.2 Bessel and Airy Functions

For computing the Bessel functions J,(z), Y,(z), I,(z) and K, (z) where z is real and v = 0 or 1,
special routines are provided, which are much faster than the more general routines that allow a complex
argument and arbitrary real v > 0. Similarly, special routines are provided for computing the Airy
functions and their derivatives Ai(z), Bi(z), Ai'(z), Bi'(z) for a real argument which are much faster
than the routines for complex arguments.

4 Index

Airy function, Al, real argument S17AGF
Airy function, Ai’, real argument S17AJF
Airy function, Ai or Ai’, complex argument, optionally scaled S17DGF
Airy function, Bi, real argument S17ABF
Airy function, Bi’, real argument S17AKF
Airy function, Bi or Bi’, complex argument, optionally scaled S17DHF
Arccos, inverse circular cosine SO9ABF
Arccosh, inverse hyperbolic cosine S11ACF
Arcsin, inverse circular sine SO9AAF
Arcsinh, inverse hyperbolic sine S11ABF
Arctanh, inverse hyperbolic tangent S11AAF
Bessel function, J,, real argument S17AEF
Bessel function, J,, real argument S17AFF
Bessel function, J,, complex argument, optionally scaled S17DEF
Bessel function, Yj, real argument S17ACF
Bessel function, Y;, real argument S17ADF
Bessel function, Y,,, complex argument, optionally scaled S17DCF
Complement of the Cumulative Normal distribution S15ACF
Complement of the Error function, real argument S15ADF
Complement of the Error function, scaled, complex argument S15DDF
Cosine, hyperbolic S10ACF
Cosine Integral S13ACF
Cumulative Normal distribution function S15ABF
Dawson’s Integral S15AFF
Digamma function, scaled S14ADF
Elliptic functions, Jacobian, sn, cn, dn S21CAF
Elliptic integral, symmetrised, degenerate of 1st kind, R¢ S21BAF
Elliptic integral, symmetrised, of 1st kind, Rp S21BBF
Elliptic integral, symmetrised, of 2nd kind, Rp S21BCF
Elliptic integral, symmetrised, of 3rd kind, R; S21BDF
Erf, real argument S15AEF
Erfc, real argument S15ADF
Erfc, scaled, complex argument S15DDF

S.6 [NP3086/18]

S - Approzimations of Special Functions

Error function, real argument

Exponential, complex

Exponential Integral

Fresnel Integral, C

Fresnel Integral, S

Gamma function

Gamma function, incomplete

Generalized Factorial function

Hankel function H ,(,1) or H ‘(,2), complex argument, optionally scaled
Incomplete Gamma function

Jacobian elliptic functions, sn, cn, dn

Kelvin function, bei z

Kelvin function, ber z

Kelvin function, keiz

Kelvin function, ker z

Logarithm of Gamma function

Logarithm of 1 + z

Modified Bessel function, I, real argument

Modified Bessel function, I, real argument

Modified Bessel function, I,, complex argument, optionally scaled
Modified Bessel function, K, real argument

Modified Bessel function, K, real argument

Modified Bessel function, K, complex argument, optionally scaled
Psi function

Psi function and derivatives, scaled

Scaled modified Bessel function, e~!*!I;(z), real argument
Scaled modified Bessel function, e~*/1, (z), real argument
Scaled modified Bessel function, e” Ky(z), real argument
Scaled modified Bessel function, e” K, (z), real argument
Sine, hyperbolic

Sine integral

Tangent, circular

Tangent, hyperbolic

Trigamma function, scaled

5 References

Introduction — S

S15AEF
SO1EAF
S13AAF
S20ADF
S20ACF
S14AAF
S14BAF
S14AAF
S17DLF
S14BAF
S21CAF
S19ABF
S19AAF
S19ADF
S19ACF
S14ABF
SO1BAF
S18AEF
S1BAFF
S18DEF
S18ACF
S18ADF
S18DCF
S14ACF
S14ADF
S18CEF
S18CFF
S18CCF
S18CDF
S10ABF
S13ADF
SO7AAF
S10AAF
S14ADF

[1] Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications

(3rd Edition)

[2] Carlson B C (1965) On computing elliptic integrals and functions J. Math. Phys. 44 36-51

[3] Carlson B C (1977) Special Functions of Applied Mathematics Academic Press

[4] Carlson B C (1977) Elliptic integrals of the first kind SIAM J. Math. Anal 8 231-242

[5] Clenshaw C W (1962) Mathematical tables Chebyshev Series for Mathematical Functions HMSO

[6] Fox L and Parker I B (1968) Chebyshev Polynomials in Numerical Analysis Oxford University Press

[7] Schonfelder J L (1976) The production of special function routines for a multi-machine library

Softw. Pract. Ezper. 6 (1)

[NP3086/18]

S.7 (last)

S — Approximations of Special Functions S01BAF

SO01BAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
SO1BAF returns a value of the shifted logarithmic function, In(1+x), via the routine name.
Specification
real FUNCTION SO1BAF (X, IFAIL)
INTEGER IFAIL
real X
Description

This routine computes values of In(1+x), retaining full relative precision even when |x| is small.
The routine is based on the Chebyshev expansion

1 +p® + 2p% o p*t -
In-TP *px _ 4y ..E._sz ().

1+p*-2p%x im2k+1

Setting ¥ = X(4p%) 4 choosing p = L=L. ¢ = {2 the expansion is valid in the domain
. 2p(x+2)’ gp q+1 1 P

X € [ﬁ—l,x/f—lJ. Outside this domain, In(1+x) is computed by the Fortran intrinsic

logarithmic function.

References

[1] LYUSTERNIK, L.A., CHERVONENKIS, O.A. and YANPOLSKII, A R.
Handbook for Computing Elementary Functions, p. 57.
Pergamon Press, 1965.

Parameters

X —real. Input
On entry: the argument x of the function.
Constraint: X > -1.0.

IFAIL - INTEGER. Input/ Output

Onentry. IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, X < -1.0.
The result is returned as zero.

[NP1692/14] Page 1

S01BAF S — Approximations of Special Functions

7.

9.1.

9.2.

Page 2

Accuracy

The returned result should be accurate almost to machine precision, with a limit of about 20
significant figures due to the precision of internal constants. Note however that if x lies very
close to —1.0 and is not exact (for example if x is the result of some previous computation and
has been rounded), then precision will be lost in the computation of 1 + x, and hence In(1+x),
in SO1BAF.

Further Comments

Empirical tests show that the time taken for a call of SO1BAF usually lies between about 1.25
and 2.5 times the time for a call to the standard Fortran function LOG.

Example

The following program reads values of the argument x from a file, evaluates the function at each
value of x and prints the results.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations,

* SO01BAF Example Program Text
* Mark 14 Release. NAG Copyright 1989
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. External Functions .
real SO01BAF
EXTERNAL S01BAF
* .. Local Scalars
real X, Y
INTEGER IFAIL
* .. Executable Statements ..
WRITE (NOUT,*) ’S01BAF Example Program Results’
* Skip heading in data file

READ (NIN,*)

WRITE (NOUT, *)

WRITE (NOUT,*) ’ X Y’
20 READ (NIN,*,END=40) X

IFAIL = 0

Y = SO1BAF(X, IFAIL)

WRITE (NOUT,99999) X, Y
GO TO 20
40 STOP
*
99999 FORMAT (1X,1P,2e12.4)
END

Program Data

SO01BAF Example Program Data
2.50E+0
1.25E-1
-9.06E-1
1.29E-3
-7.83E-6
1.00E-9

[NP1692114)

S ~ Approximations of Special Functions

9.3. Program Results
S01BAF Example Program Results

S01BAF

X Y
2.5000E+00 1.2528E+00
1.2500E-01 1.1778E-01

-9.0600E-01 -2.3645E+00
1.2900E-03 1.2892E-03
-7.8300E-06 —7.8300E-06
1.0000E-09 1.0000E-09
[NP2478116)

Page 3 (last)

S — Approximations of Special Functions SO1EAF

SO01EAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
SO1EAF evaluates the exponential function e’, for complex z.

2. Specification
complex FUNCTION SOlEAF (Z, IFAIL)

INTEGER IFAIL
complex Z

3. Description

This routine evaluates the exponential function e*, taking care to avoid machine overflow, and
giving a warning if the result cannot be computed to more than half precision. The function is
evaluated as e* = e*(cos y+i siny), where x and y are the real and imaginary parts respectively
of z.

Since cos y and sin y are less than or equal to 1 in magnitude, it is possible that ¢* may overflow
although e*cos y or e*sin y does not. In this case the alternative formula sign(cos y)e**"!** s
used for the real part of the result, and sign(sin y)e**"**”! for the imaginary part. If either part
of the result still overflows, a warning is returned through parameter IFAIL.

If Im z is too large, precision may be lost in the evaluation of siny and cos y. Again, a warning
is returned through IFAIL.

4. References
None.

S. Parameters
1: Z— complex. Input
On entry: the argument z of the function.

2: JFAIL - INTEGER. Input/ Output

Onentry. IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

The real part of the result overflows, and is set to the largest safe number with the correct
sign. The imaginary part of the result is meaningful.

IFAIL = 2

The imaginary part of the result overflows, and is set to the largest safe number with the
correct sign. The real part of the result is meaningful.

IFAIL = 3

Both real and imaginary parts of the result overflow, and are set to the largest safe number
with the correct signs.

[NP1692/14] Page 1

SO1EAF S — Approximations of Special Functions

9.1.

IFAIL = 4
The computed result is accurate to less than half precision, due to the size of Im z.

IFAIL = 5
The computed result has no precision, due to the size of Im z, and is set to zero.

Accuracy

Accuracy is limited in general only by the accuracy of the Fortran intrinsic functions in the
computation of siny, cosy and e”, where x = Rez, y = Imz. As y gets larger, precision will
probably be lost due to argument reduction in the evaluation of the sine and cosine functions,
until the warning error IFAIL = 4 occurs when y gets larger than /1/&, where ¢ is the machine
precision. Note that on some machines, the intrinsic functions SIN and COS will not operate on
arguments larger than about 4/1/¢, and so IFAIL can never return as 4.

x+In jcos y|

In the comparatively rare event that the result is computed by the formulae sign(cos y)e
and sign(sin y)e**'"!"®! a further small loss of accuracy may be expected due to rounding errors
in the logarithmic function.

Further Comments
None.

Example

The following program reads values of the argument z from a file, evaluates the function at each
value of z and prints the results.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* SO1EAF Example Program Text
* Mark 14 Release. NAG Copyright 1989.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
complex W, 2
INTEGER IFAIL
* .. External Functions ..
complex SO1EAF
EXTERNAL SO1EAF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘SOlEAF Example Program Results’
* Skip heading in data file

READ (NIN, *)
WRITE (NOUT, *)
WRITE (NOUT, *)
+ Z exp(2)’
20 READ (NIN, *,END=40) 2z

IFAIL = 0

W = SO1lEAF(Z, IFAIL)

WRITE (NOUT,99999) 2z, W

GO TO 20
40 STOP
*
99999 FORMAT (1X,’(’,Fl12.4,’,’,F12.4,") (’',Fl12.4,’,",F12.4,")")
END

Page 2 [NP1692/14]

S — Approximations of Special Functions SO1EAF

9.2. Program Data

SO1lEAF Example Program Data
(1.0, 0.0)
(-0.5, 2.0)
(0.0,-2.0)
(-2.5,-1.5)

9.3. Program Results
SO1lEAF Example Program Results

Z exp(2)
(1.0000, 0.0000) (2.,7183, 0.0000)
(-0.5000, 2.0000) (-0.2524, 0.5515)
(0.0000, -2.0000) (-0.4161, -0.9093)
(-2.5000, -1.5000) (0.0058, -0.0819)

[NP1692114) Page 3 (last)

S — Approximations of Special Functions SO07AAF

S07AAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

L

Purpose
SO7AAF returns the value of the circular tangent, tan x, via the routine name.
Specification
real FUNCTION SO7AAF (X, IFAIL)
INTEGER IFAIL
real X
Description

The routine calculates an approximate value for the circular tangent of its argument, tan x. It is
based on the Chebyshev expansion

tan 6 = 6 y(1r) = 63 c,T,(2)
r=0

2
Where—’—t<9<—7—tand—1<t<+l, t=24—0 - L
4 4 (4
The reduction to the standard range is accomplished by taking
x=Nm2 + 6
. . T T
where N is an integer and -1 <8< 7

ie. @ =x - (E)f where N = [2—;] = the nearest integer to %

w)2
From the properties of tan x it follows that
_ tan 6, N even
BX = 1_ltan6, N odd
References

[1] ABRAMOWITZ, M. and STEGUN, 1LA.
Handbook of Mathematical Functions.
Dover Publications, Ch. 4.3, p. 71, 1968.

Parameters
X —real. Input
On entry: the argument x of the function.

IFAIL — INTEGER. Input! Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

The routine has been called with an argument that is too large; the default result returned is
zero.

[NP1692/14] Page 1

SO07AAF S — Approximations of Special Functions

IFAIL = 2

The routine has been called with an argument that is too close to an odd multiple of #/2, at
which the function is infinite; the routine returns a value with the correct sign but a more or
less arbitrary but large magnitude (see Section 7).

7. Accuracy
If & and € are the relative errors in the argument and result respectively, then in principle
2x
sin 2x 2
That is a relative error in the argument, x, is amplified by at least a factor 2x/sin 2x in the result.
Similarly if E is the absolute error in the result this is given by

£2

Ex2*_§
Cos“x

The equalities should hold if & is greater than the machine precision (& is a result of data errors
etc.) but if § is simply the round off error in the machine it is possible that internal calculation
rounding will lose an extra figure.

The graphs below show the behaviour of these amplification factors.

/s [
10?
10!

10°

T

T T T TTTT] T IIII|||| T

0 /2 ® 3n/2 2% 512 3x Tn/2
X

Page 2 [NP1692/14]

S — Approximations of Special Functions SO07AAF

9.1.

LI B

[

10° X \ . s . .)
0 n/2 n 3n/2 2n 5n/2 K} 5 /2
x

LR AR |

In the principal range it is possible to preserve relative accuracy even near the zero of tan x at
x = 0 but at the other zeros only absolute accuracy is possible. Near the infinities of tan x both
the relative and absolute errors become infinite and the routine must fail (error 2).

If N is odd and |6] < xF, the routine could not return better than two figures and in all
probability would produce a result that was in error in its most significant figure. Therefore the
routine fails and it returns the value

. 1 . T
—Slgne(@) = —sxgnG tan(E—IxF2|>

which is the value of the tangent at the nearest argument for which a valid call could be made.

Accuracy is also unavoidably lost if the routine is called with a large argument. If |x| > F,| the
routine fails (error 1) and returns zero. (See the Users’ Note for your implementation for
specific values of F, and F,).

Further Comments
For details of the time taken by the routine see the Users’ Note for your implementation.

Example

The following program reads values of the argument x from a file, evaluates the function at each
value of x and prints the results.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precisi dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* SO07AAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real X, Y
INTEGER IFAIL

[NP1692/14] Page 3

SO07AAF S — Approximations of Special Functions

* .. External Functions

real SO7AAF

EXTERNAL SO7AAF
* .. Executable Statements ..

WRITE (NOUT,*) ’‘SO7AAF Example Program Results’
* Skip heading in data file

READ (NIN, *)
WRITE (NOUT, *)
WRITE (NOUT,*) X Y IFAIL’
WRITE (NOUT, *)
20 READ (NIN, *,END=40) X
IFAIL = 1

Y = SO7AAF (X, IFAIL)

WRITE (NOUT,99999) X, Y, IFAIL
GO TO 20
40 STOP
*
99999 FORMAT (1X,1P,2e12.3,17)
END

9.2. Program Data
SO07AAF Example Program Data
-2.0

3.0
1.5708

9.3. Program Results
SO7AAF Example Program Results

X Y IFAIL

-2.000E+00 2.185E+00
-5.000E-01 -5.463E-01
1.000E+00 1.557E+00
3.000E+00 -1.425E-01
1.571E+00 -2.722E+05

[eNoNoNeNo]

Page 4 (last) [NP1692/14)

S — Approximations of Special Functions S09AAF

S09AAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised tcrms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

SO9AAF returns the value of the inverse circular sine, arcsin x, via the routine name. The value
is in the principal range (—7/2,7/2)

Specification
real FUNCTION SO9AAF (X, IFAIL)
INTEGER IFAIL
real X

Description

The routine calculates an approximate value for the inverse circular sine, arcsin x. It is based on
the Chebyshev expansion

arcsinx = xxy(x) = x.'a,T.(t)
r=0

where——l— <x < Landt=4x2 - 1.

v TS

Forx* <4, arcsinx = xxy(x).
Forj < x? <1, arcsinx = signx{g—arcsinx/l—xz}.
Forx? > 1, arcsin x is undefined and the routine fails.

References

[1] ABRAMOWITZ, M. and STEGUN, LA.
Handbook of Mathematical Functions.
Dover Publications, Ch. 4.4, p. 79, 1968.

Parameters

X —real. Input
On entry: the argument x of the function.
Constraint. |X| £ 1.0.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

The routine has been called with an argument greater than 1.0 in absolute value; arcsin x is
undefined and the routine returns zero.

[NP1692/14] Page 1

S09AAF S — Approximations of Special Functions

7. Accuracy
If § and ¢ are the relative errors in the argument and result, respectively, then in principle

u xd|.

lel = ,

arcsinx y1l-x
That is, a relative error in the argument x, is amplified by at least a factor —x———z— in the
arcsinx 1-x

result.

The equality should hold if § is greater than the machine precision (J is a result of data errors
etc.) but if §is produced simply by round off error in the machine it is possible that rounding in
internal calculations may lose an extra figure in the result.

This factor stays close to one except near |x| = 1 where its behaviour is shown in the following
graph.

€/d

10!

1 L L L ' L
0.825 0.85 0.875 0.9 0.925 0.95 0.975 1

10°

X

For |x| close to unity, 1 — |x| ~ &, the above analysis is no longer applicable owing to the fact
that both argument and result are subject to finite bounds, (|x| < 1 and |arcsin x| < 47). In this
region £ ~ 4/&; that is the result will have approximately half as many correct significant figures
as the argument.

For |x| = 1 the result will be correct to full machine precision.

8. Further Comments
For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The following program reads values of the argument x from a file, evaluates the function at each
value of x and prints the results.

Page 2 [NP1692/14]

§ — Approximations of Special Functions

9.1. Program Text

SO09AAF

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this

manual, the results produced may not be identical for all implementations.

* SO09AAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real X, Y
INTEGER IFAIL
* .. External Functions ..
real SO9AAF
EXTERNAL SO09AAF
* .. Executable Statements ..

WRITE (NOUT,*) ’S09AAF Example Program Results’

* Skip heading in data file
READ (NIN, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’ X Y
WRITE (NOUT, *)
20 READ (NIN, *,END=40) X
IFAIL = 1

Y = SO09AAF (X, IFAIL)

WRITE (NOUT,99999) X, Y, IFAIL
GO TO 20
40 STOP
*
99999 FORMAT (1X,1P,2e12.3,I7)
END

9.2. Program Data

SO9AAF Example Program Data
-0.5
0.1

0
2
-1

(6, R =V

9.3. Program Results
SO9AAF Example Program Results

X Y IFAIL

-5.000E-01 -5.236E-01
1.000E-01 1.002E-01
9.000E-01 1.120E+00
2.000E+00 0.000E+00

-1.500E+00 0.000E+00

HPRPOOO

[NP1692/14)

Page 3 (last)

S — Approximations of Special Functions S09ABF

SO09ABF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routinc name may be precision-dependent.

1. Purpose

SO09ABF returns the value of the inverse circular cosine, arccos x, via the routine name; the result
is in the principal range (0,7).

2. Specification
real FUNCTION SO9ABF (X, IFAIL)

INTEGER IFAIL
real X

3. Description

The routine calculates an approximate value for the inverse circular cosine, arccos x. It is based
on the Chebyshev expansion

arcsinx = xxy(¢) = x Y,'a,T.(t)
r=0

-1 1

— S X £ —,
v

n .
For x> <4, arccosx = = — arcsinx.
2

where and r = 4x% - 1.

For-1 < x < —_—1, arccosx = m — arcsiny1-x2.
12
1 . 2
For = <x £ 1, arccos x = arcsiny1l-x~°,
V2

For |x] > 1, arccos x is undefined and the routine fails.

4. References

[1] ABRAMOWITZ, M. and STEGUN, LA.
Handbook of Mathematical Functions.
Dover Publications, Ch. 4.4., p. 79, 1968.

5. Parameters

1: X —real. Input
On entry: the argument x of the function.
Constraint: |X| < 1.0.

2: IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

SO9ABF has been called with |X| > 1.0, for which arccos is undefined. A zero result is
returned.

[NP1692/14] Page 1

S09ABF S — Approximations of Special Functions

7.

Page 2

Accuracy
If § and ¢ are the relative errors in the argument and the result, respectively, then in principle
X
le| = xd|.

arccos x y1-x>
The equality should hold if & is greater than the machine precision (Jis due to data errors etc.),
but if & is due simply to round-off in the machine it is possible that rounding etc. in internal
calculations may lose one extra figure.

The behaviour of the amplification factor —-—’-‘——————2 is shown in the graph below.
arccos x V1-x

In the region of x = 0 this factor tends to zero and the accuracy will be limited by the machine
precision. For |x| close to one, 1 — |x| ~ &, the above analysis is not applicable owing to the
fact that both the argument and the result are bounded |x| < 1, 0 < arccosx < .

In the region of x ~ —1 we have € ~ 4/, that is the result will have approximately half as many
correct significant figures as the argument.

In the region x ~ +1, we have that the absolute error in the result, E, is given by E ~ 4/6, that
is the result will have approximately half as many decimal places correct as there are correct

figures in the argument.
€/

10!

TTT]

10°

T T T

T

TTTTT]

wl

L s N L ' L L
-0.75 -0.5 -0.25 0 0.25 0.5 0.75

-

Further Comments
For details of the time taken by the routine see the Users’ Note for your implementation.

Example

The following program reads values of the argument x from a file, evaluates the function at each
value of x and prints the results.

[NP1692/14)

S — Approximations of Special Functions S09ABF

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

40

*

99999

SO09ABF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
.. Local Scalars ..

real X, Y

INTEGER IFAIL

.. External Functions ..

real SO9ABF
EXTERNAL SO09ABF

.. Executable Statements ..

WRITE (NOUT,*) ’SO9ABF Example Program Results’
Skip heading in data file

READ (NIN, *)

WRITE (NOUT, *)

WRITE (NOUT,x) ’ X Y IFAIL’
WRITE (NOUT, *)

READ (NIN, *, END=40) X

IFAIL = 1

Y = SO09ABF (X, IFAIL)

WRITE (NOUT,99999) X, Y, IFAIL
GO TO 20

STOP

FORMAT (1X,1P,2€l12.3,17)
END

9.2. Program Data
SO9ABF Example Program Data

9.3. Program Results
SO09ABF Example Program Results

=5.
1.
9.
2.
-1.

X Y IFAIL

000E-01 2.094E+00
000E-01 1.471E+00
000E-01 4.510E-01
000E+00 0.000E+00
500E+00 0.000E+00

HEHEOOO

[NP1692/14]

Page 3 (last)

S — Approximations of Special Functions S10AAF

S10AAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users® Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
S10AAF returns a value for the hyperbolic tangent, tanh x, via the routine name.
Specification
real FUNCTION S10AAF (X, IFAIL)
INTEGER IFAIL
real X
Description

The routine calculates an approximate value for the hyperbolic tangent of its argument, tanh x.
For |x| < 1 it is based on the Chebyshev expansion
tanhx = xxy(¢t) = x Y'a,T.(t)
re=0

where-1 S x <1, -1<¢r<1, andt=2x*-1.
For 1 < |x| < E,| (See the Users’ Note for your implementation for value of E,)

e* — 1

2x
e” +1
For |x| 2 E|, tanh x = signx to within the representation accuracy of the machine and so this
approximation is used.

tanhx =

References

[1] ABRAMOWITZ, M. and STEGUN, LA.
Handbook of Mathematical Functions.
Dover Publications, Ch. 4.5, p. 83, 1968.

Parameters
X — real. Input
On entry. the argument x of the function.

IFAIL — INTEGER. Input/ Output

Onentry. IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = O unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

There are no error exits from this routine. The parameter IFAIL is included for consistency with
the other routines in this chapter.

Accuracy

If 6 and ¢ are the relative errors in the argument and the result respectively. then in principle,
2

lel = | sian 2x§

That is, a relative error in the argument, x, is amplified by a factor approximately &, in the
result.

[NP1692/14] Page 1

S10AAF S — Approximations of Special Functions

The equality should hold if §is greater than the machine precision (6 due to data errors etc.) but
if & is due simply to the round-off in the machine representation it is possible that an extra figure
may be lost in internal calculation round-off.

The behaviour of the amplification factor is shown in the following graph:

€/3

10°

107!

It should be noted that this factor is always less than or equal to 1.0 and away from x = O the
accuracy will eventually be limited entirely by the precision of machine representation.

8. Further Comments
For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The following program reads values of the argument x from a file, evaluates the function at each
value of x and prints the results.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* S10AAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real X, Y
INTEGER IFAIL
* .. External Functions ..
real S10AAF
EXTERNAL S10AAF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘S10AAF Example Program Results’
* Skip heading in data file

READ (NIN, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’ X Y IFAIL’
WRITE (NOUT, *)
20 READ (NIN,*,END=40) X
IFAIL = 1

Y = S10AAF(X, IFAIL)

Page 2 [NP1692/14]

S — Approximations of Special Functions S10AAF

WRITE (NOUT,99999) X, Y, IFAIL
GO TO 20
40 STOP
*
99999 FORMAT (1X,1P,2e12.3,1I7)
END

9.2. Program Data

S10AAF Example Program Data
-20.0
-5.0
0.5
5.0

9.3. Program Results
S10AAF Example Program Results

X Y IFAIL

-2.000E+01 -1.000E+00
-5.000E+00 -9.999E-01
5.000E-01 4.621E-01
5.000E+00 9.999E-01

[eNeNoNeo]

[NP1692/14) Page 3 (last)

S — Approximations of Special Functions S10ABF

S10ABF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
S10ABF returns the value of the hyperbolic sine, sinh x, via the routine name.
Specification
real FUNCTION S10ABF (X, IFAIL)
INTEGER IFAIL
real X
Description

The routine calculates an approximate value for the hyperbolic sine of its argument, sinh x.
For |x| < 1 it uses the Chebyshev expansion
sinhx = xxy(¢) = x Y,a,T, (1)
ra)

where t = 2x* — 1.

Forl < |x| S E;, sinhx = §(e*—e™)

where E,| is a machine-dependent constant, details of which are given in the Users’ Note for your
implementation.

For |x| > E,, the routine fails owing to the danger of setting overflow in calculating e*. The
result returned for such calls is sinh(signx E,), i.e. it returns the result for the nearest valid

argument.

References

[1] ABRAMOWITZ, M. and STEGUN, ILA.
Handbook of Mathematical Functions.
Dover Publications, Ch. 4.5, p. 83, 1968.

Parameters
X — real. Input
On entry: the argument x of the function.

IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

The routine has been called with an argument too large in absolute magnitude. There is a
danger of setting overflow. The result is the value of sinh at the closest argument for which
a valid call could be made. (See Section 3 and the Users’ Note for your implementation).

[NP1692/14) Page 1

S10ABF S — Approximations of Special Functions

7.

9.1.

Accuracy
If & and ¢ are the relative errors in the argument and result, respectively, then in principle
le] = |x cothx x4].

That is the relative error in the argument, x, is amplified by a factor, approximately x coth x. The
equality should hold if 6 is greater than the machine precision (J is a result of data errors etc.)
but, if §is simply a result of round-off in the machine representation of x, then it is possible that
an extra figure may be lost in internal calculation round-off.

The behaviour of the error amplification factor can be seen in the following graph:

€/d

10!

10°

It should be noted that for |x| = 2
eE~x6=4A
where A is the absolute error in the argument.

Further Comments
For details of the time taken by the routine see the Users’ Note for your implementation.

Example

The following program reads values of the argument x from a file, evaluates the function at each
value of x and prints the results.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* S10ABF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real X, Y
INTEGER IFAIL
* .. External Functions ..
real S10ABF
EXTERNAL S10ABF
* .. Executable Statements

WRITE (NOUT,*) ’‘S10ABF Example Program Results’

Page 2 [NP1692/14)

S — Approximations of Special Functions

* Skip heading in data file
READ (NIN, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ' X
WRITE (NOUT, *)
20 READ (NIN, *,END=40) X
IFAIL = 1

Y = S10ABF (X, IFAIL)

WRITE (NOUT,99999) X, Y, IFAIL

GO TO 20
40 STOP
*
99999 FORMAT (1X,1P,2€12.3,I7)
END

9.2. Program Data

S10ABF Example Program Data
-10.0

-0.

0.

0.

25.

ouvuowm

9.3. Program Results
S10ABF Example Program Results

X Y IFAIL

-1.000E+01 -1.101E+04
-5.000E-01 -5.211E-01
0.000E+00 0.000E+00
5.000E-01 5.211E-01
2.500E+01 3.600E+10

[eNeoNoRoNol

IFAIL’

S10ABF

[NP1692/14)

Page 3 (last)

S — Approximations of Special Functions S10ACF

S10ACF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
S10ACEF returns the value of the hyperbolic cosine, cosh x, via the routine name.

2. Specification
real FUNCTION S10ACF (X, IFAIL)

INTEGER IFAIL
real X

3. Description
The routine calculates an approximate value for the hyperbolic cosine, cosh x.
For |x| £ E;, coshx = }(e*+e7™).
For |x| > E,, the routine fails owing to danger of setting overflow in calculating e*. The result
returned for such calls is cosh E,, i.e. it returns the result for the nearest valid argument. The

value of machine-dependent constant E, may be given in the Users’ Note for your
implementation.

4. References

[1] ABRAMOWITZ, M. and STEGUN, LA.
Handbook of Mathematical Functions.
Dover Publications, Ch. 4.5, p. 83, 1968.

5. Parameters
X — real. Input
On entry: the argument x of the function.

2: IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

The routine has been called with an argument too large in absolute magnitude. There is a
danger of overflow. The result returned is the value of cosh x at the nearest valid argument.

7. Accuracy
If & and ¢ are the relative errors in the argument and result, respectively, then in principle
€ = x tanhx X4.

That is, the relative error in the argument, x, is amplified by a factor, at least x tanh x. The
equality should hold if J is greater than the machine precision (6 is due to data errors etc.) but
if is simply a result of round-off in the machine representation of x then it is possible that an
extra figure may be lost in internal calculation round-off.

[NP1692/14] Page 1

S10ACF S — Approximations of Special Functions

9.1.

The behaviour of the error amplification factor is shown by the following graph:

_€/d

-10

It should be noted that near x = 0 where this amplification factor tends to zero the accuracy will
be limited eventually by the machine precision. Also for |x] = 2

eE~x6=4
where A is the absolute error in the argument x.

Further Comments
For details of the time taken by the routine see the Users’ Note for your implementation.

Example

The following program reads values of the argument x from a file, evaluates the function at each
value of x and prints the results.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* S10ACF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real X, ¥
INTEGER IFAIL
* .. External Functions ..
real S10ACF
EXTERNAL S10ACF
* .. Executable Statements ..

WRITE (NOUT,*) ’S10ACF Example Program Results’

Page 2 [NP1692/14]

S — Approximations of Special Functions

* Skip heading in data file
READ (NIN, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ' X
WRITE (NOUT, *)
20 READ (NIN, *,END=40) X
IFAIL =1

Y = S10ACF(X,IFAIL)

WRITE (NOUT,99999) X, Y, IFAIL
GO TO 20
40 sSTOP
*
99999 FORMAT (1X,1P,2€12.3,17)
END

9.2. Program Data

S10ACF Example Program Data
-10.0

-0.

0.

0.

25.

ocouvowuv

9.3. Program Results
S10ACF Example Program Results

X Y IFAIL

-1.000E+01 1.101E+04
-5.000E-01 1.128E+00
0.000E+00 1.000E+00
5.000E-01 1.128E+00
2.500E+401 3.600E+10

[eNeoNoNoNe)

IFAIL’

S10ACF

[NP1692/14]

Page 3 (last)

S — Approximations of Special Functions S11AAF

S11AAF - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
S11AAF returns the value of the inverse hyperbolic tangent, arctanh x, via the routine name.
Specification
real FUNCTION S11AAF (X, IFAIL)
INTEGER IFAIL
real X
Description

The routine calculates an approximate value for the inverse hyperbolic tangent of its argument,
arctanh x.

For x* < 4 it is based on the Chebyshev expansion
arctanh x = xxy(¢t) = x Y,'a,T.(1)
r=0
where 1 <x< 1
V2 V2’
For } < x? < 1, it uses

arctanh x = 4ln (lic)
1-x

For [x| 2 1, the routine fails as arctanh x is undefined.

-1<t<1, andtr=4x*-1.

References

[1] ABRAMOWITZ, M. and STEGUN, LA.
Handbook of Mathematical Functions.
Dover Publications, Ch. 4.6, p. 86, 1968.

Parameters

X —real. Input
On entry: the argument x of the function.
Constraint. |X| < 1.0.

IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

The routine has been called with an argument greater than or equal to 1.0 in magnitude, for
which arctanh is not defined. The result is returned as zero.

[NP1692/14) Page 1

S11AAF S — Approximations of Special Functions

7. Accuracy
If 6 and ¢ are the relative errors in the argument and result, respectively, then in principle

le] = 3 a x0|.
(1—-x“)arctanh x

That is, the relative error in the argument, x, is amplified by at least a factor 3 in
(1-x*)arctanh x

the result. The equality should hold if 6 is greater than the machine precision (3 due to data
errors etc.) but if & is simply due to round-off in the machine representation then it is possible
that an extra figure may be lost in internal calculation round-off.

The behaviour of the amplification factor is shown in the following graph:

€/d

10!

10°

' ' L L ' L ‘
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

The factor is not significantly greater than one except for arguments close to |x| = 1. However
in the region where |x| is close to one, 1 — |x| ~ &, the above analysis is inapplicable since x is
bounded by definition, |x| < 1. In this region where arctanh is tending to infinity we have

€~ 1/méd

which implies an obvious, unavoidable serious loss of accuracy near |x| ~ 1, e.g. if x and 1
agree to 6 significant figures, the result for arctanh x would be correct to at most about one

figure.

8. Further Comments
For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The following program reads values of the argument x from a file, evaluates the function at each
value of x and prints the results.

Page 2 [NP1692/14]

S — Approximations of Special Functions S11AAF

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

40

*

99999

S11AAF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
.. Local Scalars ..

real X, Y

INTEGER IFAIL

.. External Functions ..

real S11AAF
EXTERNAL S11AAF

.. Executable Statements ..

WRITE (NOUT,*) ’S11AAF Example Program Results’
Skip heading in data file

READ (NIN, *)

WRITE (NOUT, *)

WRITE (NOUT,*) ' X Y IFAIL’
WRITE (NOUT, *)

READ (NIN,*,END=40) X

IFAIL = 1

Y = S11AAF(X,IFAIL)

WRITE (NOUT,99999) X, Y, IFAIL
GO TO 20

STOP

FORMAT (1X,1P,2€12.3,I7)
END

9.2. Program Data
S11AAF Example Program Data

-0.5
0.0
0.5

-0.9999
3.0

9.3. Program Results
S11AAF Example<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>